DOI QR코드

DOI QR Code

Artificial seed production and cultivation of Sargassum macrocarpum (Fucales, Phaeophyta)

  • Ko, Shin Ja (Marine Science Institute, Jeju National University) ;
  • Kim, Yoo Kyung (Marine Science Institute, Jeju National University) ;
  • Hong, Seong Wan (Ocean and Fisheries Research Institute) ;
  • Kang, Min Su (Ocean and Fisheries Research Institute) ;
  • Park, Chan Sun (Department of Marine and Fisheries Resources, Mokpo National University) ;
  • Hwang, Eun Kyoung (Aquatic Plant Variety Center, National Institute of Fisheries Science) ;
  • Lee, Young Don (Marine Science Institute, Jeju National University)
  • Received : 2020.01.27
  • Accepted : 2020.05.27
  • Published : 2020.06.15

Abstract

Sargassum macrocarpum is a rich source of anti-inflammatory compounds. Recently, one of the compounds, tuberatolide B, has been reported as a functional anti-inflammatory additive for foods and nutraceuticals. The artificial seeding, growth and maturation of S. macrocarpum were investigated from May 2018 to September 2019. Indoor culture experiments for induction of egg release were conducted at temperatures of 17, 20, 23, and 26℃ and irradiances of 0, 10, 20, 40, and 80 μmol photons m-2 s-1 under 14 : 10 h (L : D) photoperiod. Within a given treatment combination, higher temperatures and irradiance levels favoured the maturation of receptacles in S. macrocarpum. Using artificial temperature and irradiance control, thalli matured one month earlier than thalli in nature. Under natural condition, receptacle formation began in April, and the eggs were released in June and July. The release of eggs from the receptacles was promoted at 17-20℃ and 40-80 μmol photons m-2 s-1, and the fastest growth of germlings occuring at 15-17℃ and 40 μmol photons m-2 s-1. For mature thalli, 300 g wet-weight was sufficient to seed 100 m of seed string. Thalli grew to 10.5 ± 2.6 cm in length at a density of 6.7 ± 3.3 individuals m-1 after 1 year of cultivation, from germination. This study demonstrates that it is possible to cultivate S. macrocarpum for the production of anti-inflammatory products.

Keywords

References

  1. Blunt, J. W., Copp, B. R., Munro, M. H. G., Northcote, P. T. & Prinsep, M. R. 2011. Marine natural products. Nat. Prod. Rep. 28:196-268. https://doi.org/10.1039/C005001F
  2. Boderskov, T., Schmedes, P. S., Bruhn, A., Rasmussen, M. B., Nielsen, M. M. & Pedersen, M. F. 2016. The effect of light and nutrient availability on growth, nitrogen, and pigment contents of Saccharina latissima (Phaeophyceae) growth in outdoor tanks, under natural variation of sunlight and temperature, during autumn and early winter in Denmark. J. Appl. Phycol. 28:1153-1165. https://doi.org/10.1007/s10811-015-0673-7
  3. Chandraraj, S., Prakash, B. & Navanath, K. 2010. Immunomodulatory activities of ethyl acetate extracts of two marine sponges Gelliodes fibrosa and Tedania anhelans and brown algae Sargassum ilicifolium with reference to phagocytosis. Res. J. Pharma. Biol. Chem. Sci. 1:302-307.
  4. Cheon, J. M., Kim, H. S., Choi, E. O., Kwon, D. H., Choi, Y. H., Kim, B. W. & Hwang, H. J. 2017. Anti-inflammatory activities of an ethanol extract of Sargassum macrocarpum in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. J. Life Sci. 27:1437-1444. https://doi.org/10.5352/JLS.2017.27.12.1437
  5. Choi, B. W., Ryu, G. S., Park, S. H., Kim, E. S., Shin, J. H., Roh, S. S., Shin, H. C. & Lee, B. H. 2007. Anticholinesterase activity of plastoquinones from Sargassum sagamianum: Lead compounds for Alzheimer's disease therapy. Phytother. Res. 21:423-426. https://doi.org/10.1002/ptr.2090
  6. Davison, I. R. 1991. Environmental effects on algal photosynthesis: temperature. J. Phycol. 27:2-8. https://doi.org/10.1111/j.0022-3646.1991.00002.x
  7. Fernando, I. P. S., Nah, J. -W. & Jeon, Y. -J. 2016. Potential anti-inflammatory natural products from marine algae. Environ. Toxicol. Pharmacol. 48:22-30. https://doi.org/10.1016/j.etap.2016.09.023
  8. Food and Agriculture Organization of the United Nations. 2003. Review of the state of world aquaculture. FAO Fisheries Circular. Food and Agriculture Organization of the United Nations, Rome, 95 pp.
  9. Guillard, R. R. L. 1968. A simplified antibiotic treatment for obtaining axenic cultures of marine phytoplankton. Mimeographed document. Woods Hole Oceanography Institute of Marine Biology Laboratory, Woods Hole, MA, 9 pp.
  10. Hwang, E. K. 1997. Artificial seed production using the reproduction methods in Hizikia fusiformis (Phaeophyta). Ph.D. dissertation, Pukyong National University, Busan, 139 pp.
  11. Hwang, E. K., Baek, J. M. & Park, C. S. 2005. Growth, maturation and development of Sargassum fulvellum (Sargassaceae, Phaeophyta). J. Korean Fish. Soc. 38:112-117.
  12. Hwang, E. K., Ha, D. S. & Park, C. S. 2018. The influences of temperature and irradiance on thallus length of Saccharina japonica (Phaeophyta) during the early stages of cultivation. J. Appl. Phycol. 30:2875-2882. https://doi.org/10.1007/s10811-018-1565-4
  13. Hwang, E. K., Park, C. S. & Baek, J. M. 2006. Artificial seed production and cultivation of the edible brown alga, Sargassum fulvellum (Turner) C. Agardh: developing a new species for seaweed cultivation in Korea. J. Appl. Phycol. 18:251-257. https://doi.org/10.1007/s10811-006-9021-2
  14. Islam, M. N., Ishita, I. J., Jin, S. E., Choi, R. J., Lee, C. M., Kim, Y. S., Jung, H. A. & Choi, J. S. 2013. Anti-inflammatory activity of edible brown alga Saccharina japonica and its constituents phelphorbide a and pheophytin a in LPS-stimulated RAW 264.7 macrophage cells. Food Chem. Toxicol. 55:541-548. https://doi.org/10.1016/j.fct.2013.01.054
  15. Kang, J. Y., Khan, M. N. A., Park, N. H., Cho, J. Y., Lee, M. C., Fujii, H. & Hong, Y. K. 2008. Antipyretic, analgesic, and anti-inflammatory activities of the seaweed Sargassum fulvellum and Sargassum thunbergii in mice. J. Ethnopharmacol. 116:187-190. https://doi.org/10.1016/j.jep.2007.10.032
  16. Kapraun, D. F. 1999. Red algae polysaccharide industry: economics and research status at the turn of the century. Hydrobiologia 398/399:7-14. https://doi.org/10.1023/A:1017054607249
  17. Kim, E. -A., Kim, S. -Y., Kim, J., Oh, J. -Y., Kim, H. -S., Yoon, W. -J., Kang, D. -H. & Heo, S. -J. 2019a. Tuberatolide B isolated from Sargassum macrocarpum inhibited LPS-stimulated inflammatory response via MAPKs and $NF-{\kappa}B$ signaling pathway in RAW264.7 cells and zebrafish model. J. Funct. Foods 52:109-115. https://doi.org/10.1016/j.jff.2018.10.030
  18. Kim, H. M., Jo, J., Park, C., Choi, B. -J., Lee, H. -G. & Kim, K. Y. 2019b. Epibionts associated with floating Sargassum horneri in the Korea Strait. Algae 34:303-313. https://doi.org/10.4490/algae.2019.34.12.10
  19. Kim, H. -S., Sanjeewa, K. K. A., Fernando, I. P. S., Ryu, B., Yang, H. -W., Ahn, G., Kang, M. C., Heo, S. -J., Je, J. -G. & Jeon, Y. -J. 2018. A comparative study of Sargassum horneri Korea and China strains collected along the coast of Jeju Island South Korea: its components and bioactive properties. Algae 33:341-349. https://doi.org/10.4490/algae.2018.33.11.15
  20. Kim, K. -N., Ko, S. -C., Ye, B. -R., Kim, M. -S., Kim, J., Ko, E. -Y., Cho, H., Kim, D., Heo, S. -J. & Jung, W. -K. 2016. 5-Bromo-2-hydroxy-4-methyl-benzaldehyde inhibited LPS-induced production of pro-inflammatory mediators through the inactivation of ERK, p38, and $NF-{\kappa}B$ pathways in RAW 264.7 macrophages. Chem. Biol. Interact. 258:108-114. https://doi.org/10.1016/j.cbi.2016.08.022
  21. Kim, S. -H., Choi, D. -S., Athukorala, Y, Jeon, Y. -J., Senevirathne, M. & Rha, C. K. 2007. Antioxidant activity of sulfated polysaccharides isolated from Sargassum fulvellum. J. Food Sci. Nutr. 12:65-73.
  22. Ko, S. J., Kim, Y. K., Hong, S. W., Kang, M. S., Hwang, E. K. & Lee, Y. D. 2019. Application of reproductive allocation index to the analysis of growth and maturation pattern of Sargassum macrocarpum C. Agardh in Jeju Island, Korea. Korean J. Environ. Biol. 37:672-681. https://doi.org/10.11626/KJEB.2019.37.4.672
  23. Korea Meteorological Administration. 2019. Weather information (Typoon). Available from: http://www.weather.go.kr/weather/typoon/report.jsp. Accessed Dec 30, 2019.
  24. Kwon, K., Choi, B. -J., Kim, K. Y. & Kim, K. 2019. Tracing the trajectory of pelagic Sargassum using satellite monitoring and Lagrangian transport simulations in the East China Sea and Yellow Sea. Algae 34:315-326. https://doi.org/10.4490/algae.2019.34.12.11
  25. Laurienzo, P. 2010. Marine polysaccharides in pharmaceutical applications: an overview. Mar. Drugs 8:2435-2465. https://doi.org/10.3390/md8092435
  26. Manzoor, Z., Mathema, V. B., Chae, D., Yoo, E. -S., Kang, H. -K., Hyun, J. -W., Lee, N. H., Ko, M. -H. & Koh, Y. -S. 2014. Extracts of the Seaweed Sargassum macrocarpum inhibit the CpG-induced inflammatory response by attenuating the $NF-{\kappa}B$ pathway. Food Sci. Biotechnol. 23:293-297. https://doi.org/10.1007/s10068-014-0041-4
  27. Murase, N. 2001. Ecological study of Sargassum macrocarpum C. Agardh (Fucales, Phaeophyta). J. Shimonoseki Univ. Fish. 49:131-212.
  28. Murase, N. & Kito, H. 1998. Growth and maturation of Sargassum macrocarpum C. Agardh in Fukawa Bay, the Sea of Japan. Fish. Sci. 64:393-396. https://doi.org/10.2331/fishsci.64.393
  29. Murase, N., Kito, H., Mizukami, Y. & Maegawa, M. 2000. Productivity of a Sargassum macrocarpum (Fucales, Phaeophyta) population in Fukawa Bay, Sea of Japan. Fish. Sci. 66:270-277. https://doi.org/10.1046/j.1444-2906.2000.00044.x
  30. Oak, J. H. & Lee, I. K. 2006. Taxonomy of the genus Sargassum (Fucales, Phaeophyceae) from Korea II. Subgenus Bactrophycus section Halochloa and Repentia. Algae 21:393-405. https://doi.org/10.4490/ALGAE.2006.21.4.393
  31. Oh, J. -H., Kim, J. & Lee, Y. 2016. Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice. Nutr. Res. Pract. 10:42-48. https://doi.org/10.4162/nrp.2016.10.1.42
  32. Sanjeewa, K. K. A., Fernando, I. P. S., Kim, S. -Y., Kim, W. -S., Ahn, G., Jee, Y. & Jeon, Y. -J. 2019. Ecklonia cava (Laminariales) and Sargassum horneri (Fucales) synergistically inhibit the lipopolysaccharide-induced inflammation via blocking $NF-{\kappa}B$ and MAPK pathways. Algae 34:45-56. https://doi.org/10.4490/algae.2019.34.2.10
  33. Serisawa, Y., Yokohama, Y., Aruga, Y. & Tanaka, J. 2002. Growth of Ecklonia cava (Laminariales, Phaeophyta) sporophytes transplanted to a locality with different temperature conditions. Phycol. Res. 50:201-207. https://doi.org/10.1111/j.1440-1835.2002.tb00152.x
  34. Sircar, N. N. 1982. Medicinal plants. East. Pharm. 29:49-52.
  35. Smit, A. J. 2004. Medicinal and pharmaceutical uses of seaweed natural products: a review. J. Appl. Phycol. 16:245-262. https://doi.org/10.1023/B:JAPH.0000047783.36600.ef
  36. Uchida, T. 1993. The life cycle of Sargassum horneri (Phaeophyta) in laboratory culture. J. Phycol. 29:231-235. https://doi.org/10.1111/j.0022-3646.1993.00231.x
  37. Yende, S. R., Harle, U. N. & Chaugule, B. B. 2014. Therapeutic potential and health benefits of Sargassum species. Pharmacogn. Rev. 8:1-7. https://doi.org/10.4103/0973-7847.125514
  38. Yoshida, G., Arai, S. & Terawaki, T. 1997. Effects of irradiance and temperature on the germling growth of Sargassum macrocarpum (Phaeophyta) from Ohno-Seto Strait, Hiroshima Bay. Bull. Nansei Natl. Fish. Res. Inst. 30:137-145.
  39. Yoshida, T., Sawada, T. & Higaki, M. 1963. Sargassum vegetation growing in the sea around Tsuyazaki, North Kyushu, Japan. Pac. Sci. 17:135-144.
  40. Zandi, K., Ahmadzadeh, S., Tajbakhsh, S., Rastian, Z., Yousefi, F., Farshadpour, F. & Sartavi, K. 2010. Anticancer activity of Sargassum oligocystum water extract against human cancer cell lines. Eur. Rev. Med. Pharmacol. Sci. 14:669-673.