참고문헌
- ASTM C1018-97 (1997), Standard Test Methods for Flexural Toughness and First Crack Strength of Fibre Reinforced Concrete, Book of ASTM Standards, West Conshohocken, PA.
- ASTM C1609/C1609M-12 (2012), Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading), West Conshohocken. PA.
- Banthia, N. and Trottier, J.F. (1995), "Test methods for flexural toughness characterization of fiber reinforced concrete: some concerns and a proposition", ACI Mater. J., 92(1), 1-10. https://doi.org/10.14359/1176.
- Benson, S.D.P. and Karihaloo, B.L. (2005), "CARDIFRC- development and mechanical properties. Part I: development and workability", Mag. Concrete Res., 57(6), 347-352. https://doi.org/10.1680/macr.2005.57.6.347.
- Committee, J.D. (2003), "DFRCC terminology and application concepts", J. Adv. Concrete Technol., 1(3), 335-340. https://doi.org/10.3151/jact.1.335.
- Felekoglu, B., Tosun, K. and Baradan, B. (2009), "Effects of fibre type and matrix structure on the mechanical performance of self-compacting micro-concrete composites", Cement Concrete Res., 39(11), 1023-1032. https://doi.org/10.1016/j.cemconres.2009.07.007.
- Gesoglu, M., Guneyisi, E., Muhyaddin, G.F. and Asaad, D.S. (2016), "Strain Hardening ultra-high performance fiber reinforced cementitious composites: Effect of fiber type and concentration", Compos. Part B, 103, 74-83. https://doi.org/10.1016/j.compositesb.2016.08.004.
- Ghanem, H. and Obeid, Y. (2015), "The effect of steel fibers on the rhyological and mechanical properties of self compacting concrete", Eur. Scientif. J., 11(21), 85-98. https://doi.org/10.11648/j.ajce.20130103.14.
- Gopalaratnam, S., Shah, S.P., Batson, G.B., Criswell, M.E., Ramakrishnam, V. and Wecharatana, M. (1991), "Fracture toughness of fiber reinforced concrete", ACI Mater. J., 88(4), 339-353.
- Haddadou, N., Chaid, R., Ghernouti, Y. and Adjou, N. (2014), "The effect of hybrid steel fiber on the properties of fresh and hardened self-compacting concrete", J. Build. Mater. Struct., 1, 65-76. https://doi.org/10.5281/zenodo.241964.
- Hannant, D.J., Hughes, D.C., Kelly, A., Alford, N.M. and Bailey, J.E. (1983), "Toughening of cement and other brittle solids with fibres", Philos. T. Roy. Soc. A, 310(1511), 175-190. https://doi.org/10.1098/rsta.1983.0076.
- Johnston, C.D. (2001), Fiber-Reinforced Cements and Concretes, Gordon and Breach Science Publishers, Singapore.
- JSCE (1984), Method of Test for Flexural Strength and Flexural Toughness of Fibre Reinforced Concrete, JSCE Standard SF-4.
- Kim, D.J., Naaman, A.E. and El-Tawil, S. (2008), "Comparative flexural behavior of four fiber reinforced cementitious composites", Cement Concrete Compos., 30(10), 917-928. https://doi.org/10.1016/j.cemconcomp.2008.08.002.
- Kim, D.J., Park, S.H., Ryu, G.S. and Koh, K. (2011), "Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers", Constr. Build. Mater., 25, 4144-4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051.
- Kovacs, I. and Balazs, G.L. (2004), Structural Performance of Steel Fibre Reinforced Concrete, Publishing Company of Budapest University of Technology and Economics, Budapest.
- Lawler, J.S., Zampini, D. and Shah, S.P. (2005), "Microfiber and macrofiber hybrid fiber-reinforced concrete", J. Mater. Civil Eng., 17, 595-604. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(595).
- Li, J.J., Wan, C.J., Niu, J.G., Wu, L.F. and Wu, Y.C. (2017), "Investigation on flexural toughness evaluation method of steel fiber reinforced lightweight aggregate concrete", Constr. Build. Mater., 131, 449-458. https://doi.org/10.1016/j.conbuildmat.2016.11.101.
- Li, V.C. (1993), "From micromechanics to structural engineering - the design of cementitious composites for civil engineering applications", Struct. Eng/ Earthq. Eng., 10(2), 32-48.
- Naaman, A.E. (2002), "Toughness, ductility surface energy and deflection-hardening FRC composites", Proceedings of JCI Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC) - Application and Evaluation, Tokyo, Japan.
- Naaman, A.E. and Reinhardt, H.W. (1995), "Characterization of high performance fiber reinforced cement composites (HPFRCC2)", Proc., Second International Workshop, Ann Arbor, USA.
- Naaman, A.E. and Reinhardt, H.W. (2006), "Proposed classification of HPFRC composites based on their tensile response", Mater. Struct., 39(5), 547-555. https://doi.org/10.1617/s11527-006-9103-2.
- Nataraja, M.C., Dhang, N. and Gupta, A.P. (2000), "Toughness characterization of steel fiberreinforced concrete by JSCE approach", Cement Concrete Res., 30, 593-597. https://doi.org/10.1016/S0008-8846(00)00212-X.
- Pajak M. and Ponikiewski T. (2013), "Flexural behavior of self-compacting concrete reinforced with different types of steel fibers", Constr. Build. Mater., 47, 397-408. https://doi.org/10.1016/j.conbuildmat.2013.05.072.
- Park, S.H., Kim, D.J., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009.
- Rashiddadash P., Ramezanianpour, A.A. and Mahdikhani, M. (2014), "Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice", Constr. Build. Mater., 51, 313-320. https://doi.org/10.1016/j.conbuildmat.2013.10.087.
- Rossi, P., Antonio, A., Parant, E. and Fakhri, P. (2005), "Bending and compressive behaviors of a new cement composite", Cement Concrete Res., 35(1), 27-33. https://doi.org/10.1016/j.cemconres.2004.05.043.
- Sahmaran, M. and Yaman, I.O. (2007), "Hybrid fiber reinforced self compacting concrete with a high volume coarse fly ash", Constr. Build. Mater., 21(1), 150-156. https://doi.org/10.1016/j.conbuildmat.2005.06.032.
- Shah, S.P., Brandt, A.M., Ouyang, C., Baggott, R., Eibl, J. and Glinicki, M.A. (1995), "Toughness Characterization and Toughening Mechanisms", Proc. Second International RILEM Workshop, E&FN SPON, Ann Arbor, USA.
- Sharma, R. and Bansal, P.P. (2019), "Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete", Adv. Concrete Constr., 8(1), 21-31. https://doi.org/10.12989/acc.2019.8.1.021.
- Sivakumar, A. and Santhanam, M. (2007), "Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibers", Cement Concrete Compos., 29(8), 603-608. https://doi.org/10.1016/j.cemconcomp.2007.03.006.
- Wang, J.Y., Banthia, N. and Zhang, M.H. (2012), "Effect of shrinkage reducing admixture on flexural behaviors of fiber reinforced cementitious composites", Cement Concrete Compos., 34, 443-450. https://doi.org/10.1016/j.cemconcomp.2011.12.004.
- Wu, Z., Shi, C., He, W. and Wu, L. (2016), "Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete", Constr. Build. Mater., 103, 8-14. https://doi.org/10.1016/j.conbuildmat.2015.11.028.
- Yao, W., Li, J. and Wu, K. (2003), "Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction", Cement Concrete Res., 33(1), 27-30. https://doi.org/10.1016/S0008-8846(02)00913-4.
- Yoo, D.Y., Kang, S.T. and Banthia, N. (2017), "Nonlinear finite element analysis of ultra-high-performance fiber-reinforced concrete beams", Int. J. Damage Mech., 26(5), 735-757. https://doi.org/10.1177/1056789515612559.
- Yoo, D.Y., Kang, S.T. and Yoon, Y.S. (2016), "Enhancing the flexural performance of ultra-high-performance concrete using long steel fibers", Compos. Struct., 147, 220-230. https://doi.org/10.1016/j.compstruct.2016.03.032.
- Yu, R., Spiesz, P. and Brouwers, H.J.H. (2015), "Development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards an efficient utilization of binders and fibres", Constr. Build. Mater., 79, 273-282. https://doi.org/10.1016/j.conbuildmat.2015.01.050.
- Zollo, R.F. (1997), "Fiber-reinforced concrete: an overview after 30 years of development", Cement Concrete Compos., 19(2), 107-122. https://doi.org/10.1016/S0958-9465(96)00046-7.