References
- Abbas, H., Al-Salloum, Y.A., Elsanadedy, H.M. and Almusallam, T.H. (2019), "ANN models for prediction of residual strength of HSC after exposure to elevated temperatures", Fire Saf. J., 106, 13-28. https://doi.org/10.1016/j.firesaf.2019.03.011.
- Ada, M., Sevim, B., Yuzer, N. and Ayvaz, Y. (2018), "Assessment of damages on a RC building after a big fire", Adv. Concrete Constr., 6(2), 177-197. https://doi.org/10.12989/acc.2018.6.2.177.
- Arioz, O. (2007), "Effects of elevated temperatures on properties of concrete", Fire. Saf. J., 42(8), 516-522. https://doi.org/10.1016/j.firesaf.2007.01.003.
- Arioz, O. (2009), "Retained properties of concrete exposed to high temperatures: Size effect", Fire Mater., 33, 211-222. https://doi.org/10.1002/fam.996.
- Aslani, F. and Samali, B. (2013), "Predicting the bond between concrete and reinforcing steel at elevated temperatures", Struct. Eng. Mech., 48(5), 643-660. http://dx.doi.org/10.12989/sem.2013.48.5.643.
- Cadorin, J.F. and Franssen, J.M. (2003), "A tool to design steel elements submitted to compartment fires - OZone V2. Part 1: pre- and post-flashover compartment fire model", Fire Saf. J., 38, 395-427. https://doi.org/10.1016/S0379-7112(03)00014-6.
- Chaix, J.F., Garnier, V. and Corneloup, G. (2003), "Concrete damage evolution analysis by backscattered ultrasonic waves", NDT E Int., 36(7), 461-469. https://doi.org/10.1016/S0963-8695(03)00066-5.
- Chan, Y.N., Jin, P., Anson, M. and Wang, J.S. (1998), "Fire resistance of concrete: prediction using artificial neural networks", Mag. Concrete Res., 50(4), 353-358. https://doi.org/10.1680/macr.1998.50.4.353.
- Dolinar, U., Trtnik, G., Turk, G. and Hozjan, T. (2019), "The feasibility of estimation of mechanical properties of limestone concrete after fire using nondestructive methods", Constr. Build. Mater., 228, 116786. https://doi.org/10.1016/j.conbuildmat.2019.116786.
- dos Santos, C.C. and Rodrigues, J.P.C. (2016), "Calcareous and granite aggregate concretes after fire", J. Build. Eng., 8, 231-242. https://doi.org/10.1016/j.jobe.2016.09.009.
- EN 12390-3:2009, Testing Hardened Concrete - Part 3: Compressive Strength of Test Specimens.
- EN 12390-5:2009, Testing Hardened Concrete - Part 5: Flexural Strength of Test Specimens.
- EN 12504-2:2002, Testing Concrete in Structures - Part 2: Non-Destructive Testing - Determination of Rebound Number.
- EN 12504-4: 2004, Testing Concrete - Part 4: Determination of Ultrasonic Pulse Velocity.
- EN 1992-1-2:2004, Eurocode 2: Design of Concrete Structures - Part 1-2: General Rules - Structural Fire Design.
- Gupta, T., Patel, K.A., Siddique, S., Sharma, R.K. and Chaudhary, S. (2019), "Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN", Measure., 147, 106870. https://doi.org/10.1016/j.measurement.2019.106870.
- Hagan, M.T., Demuth, H.B., Beale, M.H. and De Jesus, O. (2014), Neural Network Design, 2nd Edition, Self Published.
- Haykin, S. (2009), Neural Networks and Learning Machines, Pearson Education, Inc., Upper Saddle River, New Jersy.
- Hertz, K.D. (2005), "Concrete strength for fire safety design", Mag. Concrete Res., 57(8), 445-453. https://doi.org/10.1680/macr.2005.57.8.445.
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neur. Network., 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8.
- ISO 1920-10:2010, Testing of Concrete - Part 10: Determination of Static Modulus of Elasticity in Compression.
- Krzemien, K. and Hager, I. (2015), "Post-fire assessment of mechanical properties of concrete with the use of the impact-echo method", Constr. Build. Mater., 96, 155-163. https://doi.org/10.1016/j.conbuildmat.2015.08.007.
- Ma, Q.M., Guo, R.X., Zhao, Z.M., Lin, Z.W. and He, K.C. (2015), "Mechanical properties of concrete at high temperature - a review", Constr. Build. Mater., 93, 371-383. http://dx.doi.org/10.1016/j.conbuildmat.2015.05.131.
- Matlab (1999) The Language of Technical Computing, The Mathworks Inc.
- Molkens, T., Van Coile, R. and Gernay, T. (2017), "Assessment of damage and residual load bearing capacity of concrete slab after fire: Applied reliability-based methodology", Eng. Struct., 150, 969-985. http://dx.doi.org/10.1016/j.engstruct.2017.07.078.
- Park, G.K. and Yim, H.J. (2017), "Evaluation of fire-damaged concrete: An experimental analysis based on destructive and nondestructive methods", Int. J. Concrete Struct. Mater., 11(3), 447-457. https://doi.org/10.1007/s40069-017-0211-x.
- Park, S.J. and Yim, H.J. (2016), "Evaluation of residual mechanical properties of concrete after exposure to high temperatures using impact resonance method", Constr. Build. Mater., 129, 89-97. https://doi.org/10.1016/j.conbuildmat.2016.10.116.
- Park, S.J., Park, G.K., Yim, H.J. and Kwak, H.G. (2015), "Evaluation of residual tensile strength of fire-damaged concrete using a non-linear resonance vibration method", Mag. Concrete Res., 67(5), 235-246. https://doi.org/10.1680/macr.14.00259.
- Park, S.J., Yim, H.J. and Kwak, H.G. (2014), "Nonlinear resonance vibration method to estimate the damage level on heat-exposed concrete", Fire Saf. J., 69, 36-42. https://doi.org/10.1016/j.firesaf.2014.07.003.
- Payan, C., Garnier, V., Moysan, J. and Johnson, P.A. (2007), "Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete", J. Acoust. Soc. Am., 121(4), EL125-EL130. https://doi.org/10.1121/1.2710745.
- Savva, A., Manita, P. and Sideris, K.K. (2005), "Influence of elevated temperatures on the mechanical properties of blended cement concretes prepared with limestone and siliceous aggregates", Cement Concrete Compos., 27(2), 239-248. https://doi.org/10.1016/j.cemconcomp.2004.02.013.
- Shah, A.A., Alsayed, S.H., Abbas, H. and Al-Salloum, Y.A. (2012), "Predicting residual strength of non-linear ultrasonically evaluated damaged concrete using artificial neural network", Constr. Build. Mater., 29, 42-50. https://doi.org/10.1016/j.conbuildmat.2011.10.038.
- Trtnik, G., Kavcic, F. and Turk, G. (2009), "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks", Ultrasonics, 49(1), 53-60. https://doi.org/10.1016/j.ultras.2008.05.001.
- Turkmen, I., Bingol, A.F., Tortum, A., Demirboga, R. and Gul, R. (2017), "Properties of pumice aggregate concretes at elevated temperatures and comparison with ANN models", Fire Mater., 41, 142-153. https://doi.org/10.1002/fam.2374.
- Vakharia, V. and Gujar, R. (2019), "Prediction of compressive strength and portland cement composition using cross-validation and feature ranking techniques", Constr. Build. Mater., 225, 292-301. https://doi.org/10.1016/j.conbuildmat.2019.07.224.
- Varona, F.B., Baeza, F.J., Bru, D. and Ivorra, S. (2018), "Evolution of the bond strength between reinforcing steel and fibre reinforced concrete after high temperature exposure", Constr. Build. Mater., 176, 359-370. https://doi.org/10.1016/j.conbuildmat.2018.05.065.
- Varona, F.B., Baeza, F.J., Bru, D. and Ivorra, S. (2020), "Non-linear multivariable model for predicting the steel to concrete bond after high temperature exposure", Constr. Build. Mater., 249, 118713. https://doi.org/10.1016/j.conbuildmat.2020.118713.
- Yang, O., Zhang, B., Yan, G. and Chen, J. (2018), "Bond performance between slightly corroded steel bar and concrete after exposure to high temperature", J. Struct. Eng., 144(11), 04018209. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002217.
- Yaqub, M. and Bailey, C.G. (2016), "Non-destructive evaluation of residual compressive strength of post-heated reinforced concrete columns", Constr. Build. Mater., 120, 482-493. https://doi.org/10.1016/j.conbuildmat.2016.05.022.
- Yonaba, H., Anctil, F. and Fortin, V. (2010), "Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting", J. Hydrol. Eng., 15(4), 275-283. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000188.