DOI QR코드

DOI QR Code

Laboratory investigations on the effects of acid attack on concrete containing portland cement partially replaced with ambient-cured alkali-activated binders

  • Ramagiri, Kruthi K. (Department of Civil Engineering, BITS Pilani-Hyderabad Campus) ;
  • Patil, Swaraj (Department of Civil Engineering, Politecnico di Milano) ;
  • Mundra, Harsh (Walter P Moore LLC) ;
  • Kar, Arkamitra (Department of Civil Engineering, BITS Pilani-Hyderabad Campus)
  • 투고 : 2019.06.19
  • 심사 : 2020.08.05
  • 발행 : 2020.09.25

초록

To reduce the CO2 emissions associated with the manufacture of portland cement (PC), an efficient alternative like an alkali-activated binder (AAB) is the requirement of the industry. To promote the use of AAB in construction activities, a practically implementable mix proportion is required. Owing to the several raw ingredients of AAB concrete and their associated uncertainties, partial replacement of PC by AAB may be adopted instead of complete replacement as per industrial requirements. Hence, the present study aims to determine an optimal proportion for partial replacement of PC with AAB and recommend a technique for it based on site conditions. Three modes of partial replacement are followed: combining all the dry ingredients for AAB and PC followed by the addition of the requisite liquids (PAM); combining the PC and the AAB concrete in two horizontal layers (PAH); and two vertical layers (PAV). 28-day old specimens are exposed to 10% v/v solutions of HCl, H2SO4, and HNO3 to evaluate changes in mechanical, physical, and microstructural characteristics through compressive strength, corrosion depth, and microscopy. Based on deterioration in strength and integrity, PAH or PAV can be adopted in absence of acid attack, whereas PAM is recommended in presence of acid attack.

키워드

참고문헌

  1. ACI Committee 211 (Reapproved 2009), Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91), American Concrete Institute.
  2. Aiken, T.A., Kwasny, J., Sha, W. and Soutsos, M.N. (2018), "Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack", Cement Concrete Res., 111, 23-40. https://doi.org/10.1016/j.cemconres.2018.06.011.
  3. Allahverdi, A. and Skvara, F. (2005), "Sulfuric acid attack on hardened paste of geopolymer cements. Part 1. Mechanism of corrosion at relatively high concentrations", Ceram.-Silik., 49(4), 225-229.
  4. Allahverdi, A. and Skvara, F. (2006), "Sulfuric acid attack on hardened paste of geopolymer cements-part 2. Corrosion mechanism at mild and relatively low concentrations", Ceram.-Silik., 50(1), 1-4.
  5. Askarian, M., Tao, Z., Adam, G. and Samali, B. (2018), "Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete", Constr. Build. Mater., 186, 330-337. https://doi.org/10.1016/j.conbuildmat.2018.07.160.
  6. ASTM C311/C311M (2018), Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete, ASTM International, West Conshohocken, PA.
  7. ASTM C33/C33M (2017), Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA.
  8. ASTM C39/C39M (2013), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
  9. ASTM C494 (2013), Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA.
  10. ASTM C618 (2013), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA.
  11. ASTM C989 (2013), Standard Specification for Slag Cement for Use in Concrete and Mortars, ASTM International, West Conshohocken, PA.
  12. Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (2003), "Resistance of alkali-activated slag concrete to acid attack", Cement Concrete Res., 33(10), 1607-1611. https://doi.org/10.1016/S0008-8846(03)00125-X.
  13. Bernal, S.A., Rodriguez, E.D., Mejia de Gutierrez, R. and Provis, J.L. (2012), "Performance of alkali-activated slag mortars exposed to acids", J. Sustain. Cement Bas. Mater., 1(3), 138-151. https://doi.org/10.1080/21650373.2012.747235.
  14. Central Electricity Authority (CEA) (2017), Report on Fly Ash Generation at Coal/lignite Based Thermal Power Stations and its Utilization in the Country for The Year 2016-17, New Delhi.
  15. Dassekpo, J.B.M., Zha, X., Zhan, J. and Ning, J. (2017), "The effects of the sequential addition of synthesis parameters on the performance of alkali activated fly ash mortar", Resul. Phys., 7, 1506-1512. https://doi.org/10.1016/j.rinp.2017.04.019.
  16. De Ceukelaire, L. (1992), "The effects of hydrochloric acid on mortar", Cement Concrete Res., 22(5), 903-914. https://doi.org/10.1016/0008-8846(92)90114-B.
  17. Diaz-Loya, E.I., Allouche, E. and Vaidya, S. (2011), "Mechanical properties of fly-ash-based geopolymer concrete", ACI Mater. J., 108(3), 300-306.
  18. Ding, Y., Dai, J.G. and Shi, C.J. (2016), "Mechanical properties of alkali-activated concrete: A state-of-the-art review", Constr. Build. Mater., 127, 68-79. https://doi.org/10.1016/j.conbuildmat.2016.09.121.
  19. Duxson, P. (2009), "Geopolymer precursor design", Geopolymers: Structure, Processing, Properties and Industrial Applications, Eds. Provis, J.L. and van Deventer, J.S.J., Boca Raton, Florida.
  20. Fang, G., Ho, W.K., Tu, W. and Zhang, M. (2018), "Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature", Constr. Build. Mater., 172, 476-487. https://doi.org/10.1016/j.conbuildmat.2018.04.008.
  21. Gomez, J.C., Calvet, N., Starace, A.K. and Glatzmaier, G.C. (2013), "Ca $(NO_{3})_{2}-NaNO_{3}-KNO_{3}$ molten salt mixtures for direct thermal energy storage systems in parabolic trough plants", J. Sol. Energy Eng., 135(2), 021016. https://doi.org/10.1115/1.4023182.
  22. Gu, L., Visintin, P. and Bennett, T. (2018), "Evaluation of accelerated degradation test methods for cementitious composites subject to sulfuric acid attack; application to conventional and alkali-activated concretes", Cement Concrete Compos., 87, 187-204. https://doi.org/10.1016/j.cemconcomp.2017.12.015.
  23. Hardjito, D. and Rangan, B.V. (2005), "Development and properties of low-calcium fly ash-based geopolymer concrete", Curtin University of Technology Research Report GC1, Curtin University, Perth, Australia.
  24. IS 516-1959 (2018), Methods of Tests for Strength of Concrete, Bureau of Indian Standards, New Delhi, India.
  25. Ismail, I., Bernal, S.A., Provis, J.L., San Nicolas, R., Hamdan, S. and van Deventer, J.S. (2014), "Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash", Cement Concrete Compos., 45, 125-135. https://doi.org/10.1016/j.cemconcomp.2013.09.006.
  26. Junaid, M.T. (2017), "Properties of ambient cured blended alkali activated cement concrete", IOP Conf. Ser.: Mater. Sci. Eng., 264(1), 012004. https://doi.org/10.1088/1757-899X/264/1/012004
  27. Junaid, M.T., Kayali, O., Khennane, A. and Black, J. (2015), "A mix design procedure for low calcium alkali activated fly ash-based concretes", Constr. Build. Mater., 79, 301-310. https://doi.org/10.1016/j.conbuildmat.2015.01.048.
  28. Kani, E.N., Allahverdi, A. and Provis, J.L. (2018), "Calorimetric study of geopolymer binders based on natural pozzolan", J. Therm. Anal. Calorim., 127(3), 2181-2190. https://doi.org/10.1007/s10973-016-5850-7.
  29. Kar, A. (2013) "Characterizations of concretes with alkali-activated binder and correlating their properties from micro-to specimen level", PhD Thesis, West Virginia University, Morgantown, West Virginia.
  30. Kar, A., Ray, I., Unnikrishnan, A. and Halabe, U. B. (2016), "Prediction models for compressive strength of concrete with alkali-activated binders", Comput. Concrete, 17(4), 523-539. http://dx.doi.org/10.12989/cac.2016.17.4.523.
  31. Ko, L.S., Belena, I., Duxson, P., Kavalerova, E., Krivenko, P.V., Ordonez, L.M., Tagnit-Hamou, A. and Winnefeld, F. (2014), "AAM concretes: standards for mix design/formulation and early-age properties", Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Eds. Provis, J.L. and van Deventer, J.S.J., Springer, Dordrecht, Netherlands.
  32. Kumar, S., Kumar, R. and Mehrotra, S.P. (2010), "Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer", J. Mater. Sci., 45(3), 607-615. https://doi.org/10.1007/s10853-009-3934-5.
  33. Lee, N.K. and Lee, H.K. (2016), "Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste", Cement Concrete Compos., 72, 168-179. https://doi.org/10.1016/j.cemconcomp.2016.06.004.
  34. Lloyd, R.R., Provis, J.L. and van Deventer, J.S.J. (2012), "Acid resistance of inorganic polymer binders. 1. Corrosion rate", Mater. Struct., 45(1-2), 1-14. https://doi.org/10.1617/s11527-011-9744-7.
  35. Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P. and Illikainen, M. (2018), "One-part alkali-activated materials: a review", Cement Concrete Res., 103, 21-34. https://doi.org/10.1016/j.cemconres.2017.10.001.
  36. Madavarapu, S.B. (2014), "FTIR analysis of alkali activated slag and fly ash using deconvolution techniques", M.S. Thesis, Arizona State University, Tempe, AZ.
  37. Mazhar, S. and GuhaRay, A. (2020), "Stabilization of expansive clay by fibre-reinforced alkali-activated binder: an experimental investigation and prediction modelling", Int. J. Geotech. Eng., 1-17. doi.org/10.1080/19386362.2020.1775358.
  38. Monteny, J., Vinke, E., Beeldens, A., DeBelie, N., Taerwe, L., Van Gemert, D. and Verstraete, W. (2000), "Chemical, microbiological, and in situ methods for biogenic sulfuric acid corrosion of concrete", Cement Concrete Res., 304, 623-634. https://doi.org/10.1016/S0008-8846(00)00219-2.
  39. Nath, P. and Sarker, P.K. (2014), "Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition", Constr. Build. Mater., 66, 163-171. https://doi.org/10.1016/j.conbuildmat.2014.05.080.
  40. Oelkers, E.H. and Schott, J. (1995), "Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis", Geochim. Cosmochim. Acta, 59(24), 5039-5053. https://doi.org/10.1016/0016-7037(95)00326-6.
  41. Pacheco-Torgal, F., Gomes, J. and Jalali, S. (2010), "Durability and environmental performance of alkali-activated tungsten mine waste mud mortars", J. Mater. Civil Eng., 22(9), 897-904. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000092.
  42. Palacios, M. and Puertas, F. (2011), "Effectiveness of mixing time on hardened properties of water glass activated slag pastes and mortars", ACI Mater. J., 108(1), 73-78.
  43. Pavlik, V. (1994), "Corrosion of hardened cement paste by acetic and nitric acids part II: formation and chemical composition of the corrosion products layer", Cement Concrete Res., 24(8), 1495-1508. https://doi.org/10.1016/0008-8846(94)90164-3.
  44. Provis, J.L. and van Deventer, J.S.J. (2014), Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer, Dordrecht,.
  45. Provis, J.L., Bilek, V., Buchwald, A., Dombrowski-Daube, K. and Varela, B. (2014) "Durability and testing - physical processes", Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Eds. Provis, J.L. and van Deventer J. S. J., Springer, Dordrecht, Netherlands.
  46. Provis, J.L., Palomo, A. and Shi, C. (2015), "Advances in understanding alkali-activated materials", Cement Concrete Res., 78, 110-125. https://doi.org/10.1016/j.cemconres.2015.04.013.
  47. Ramagiri, K.K. and Kar, A. (2019), "Effect of precursor combination and elevated temperatures on the microstructure of alkali-activated binder", ICJ, 93(10), 34-43. https://doi.org/10.1016/j.matpr.2020.01.093.
  48. Ramagiri, K.K., Chauhan, D., Gupta, S., Kar, A. and Adak, D. (2020), "Evaluation of structural performance of concrete with ambient-cured alkali-activated binders", Proceedings of SECON'19, SECON 2019, Lecture Notes in Civil Engineering, Springer, 46, May.
  49. Rangan, B. (2010), "Design and manufacture of fly-ash based geopolymer concrete", Concr. Aust., 34(2), 37-43.
  50. Rangan, B.V. (2008), "Low-calcium fly-ash-based geopolymer concrete", Concrete Construction Engineering Handbook, Ed. Nawy, E.G., CRC Press, New York.
  51. Rashad, A.M. (2013), "Properties of alkali-activated fly ash concrete blended with slag", Iran. J. Mater. Sci. Eng., 10(1), 57-64.
  52. Shekhovtsova, J., Kovtun, M. and Kearsley, E.P. (2015), "Evaluation of short-and long-term properties of heat-cured alkali-activated fly ash concrete", Mag. Concrete Res., 67(16), 897-905. https://doi.org/10.1680/macr.14.00377.
  53. Shi, C. (2003), "Corrosion resistance of alkali-activated slag cement", Adv. Cement Res., 15(2), 77-81. https://doi.org/10.1680/adcr.2003.15.2.77.
  54. Shi, C. and Stegmann, J.A. (2000), "Acid corrosion resistance of different cementing materials", Cement Concrete Res., 30(5), 803-808. https://doi.org/10.1016/S0008-8846(00)00234-9.
  55. Song, X., Marosszeky, M., Brungs, M. and Munn, R. (2005), "Durability of fly ash based geopolymer concrete against sulphuric acid attack", 10th International Conference on the Durability of Building Materials and Components, Lyon, France.
  56. Temuujin, J., Minjigmaa, A., Lee, M., Chen-Tan, N. and Van Riessen, A. (2011), "Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions", Cement Concrete Compos., 33(10), 1086-1091. https://doi.org/10.1016/j.cemconcomp.2011.08.008.
  57. Wallah, S.E. and Rangan. B.V. (2006), "Low-calcium fly ash-based geopolymer concrete: long-term properties", Curtin University of Technology, Perth, Australia.
  58. Xie, J., Wang, J., Rao, R., Wang, C. and Fang, C. (2019), "Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate", Compos. Part B: Eng., 164, 179-190. https://doi.org/10.1016/j.compositesb.2018.11.067.
  59. Ye, H. and Huang, L. (2020)", Degradation mechanisms of alkali-activated binders in sulfuric acid: The role of calcium and aluminum availability", Constr. Build. Mater., 246, 118477. https://doi.org/10.1016/j.conbuildmat.2020.118477.
  60. Yip, C., Lukey, G.C., Provis, J.L. and van Deventer, J.S.J. (2008), "Effect of calcium silicate sources on geopolymerization", Cement Concrete Res., 38(4), 554-564. https://doi.org/10.1016/j.cemconres.2007.11.001.
  61. Yip, C.K., Lukey, G.C. and Van Deventer, J.S. (2005), "The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation", Cement Concrete Res., 35(9), 1688-1697. https://doi.org/10.1016/j.cemconres.2004.10.042.
  62. Zhang, W., Yao, X., Yang, T. and Zhang, Z. (2018), "The degradation mechanisms of alkali-activated fly ash/slag blend cements exposed to sulphuric acid", Constr. Build. Mater., 186, 1177-1187. https://doi.org/10.1016/j.conbuildmat.2018.08.050.
  63. Zhao, M., Zhang, X. and Zhang, Y.J. (2011), "Resistance of hydrated cement paste to acid attack and kinetics analysis of corrosion", Adv. Mater. Res., 163, 3133-3137. https://doi.org/10.4028/www.scientific.net/AMR.163-167.3133.

피인용 문헌

  1. Cradle-to-Gate Life Cycle and Economic Assessment of Sustainable Concrete Mixes-Alkali-Activated Concrete (AAC) and Bacterial Concrete (BC) vol.6, pp.7, 2020, https://doi.org/10.3390/infrastructures6070104