References
- ACI Committee 211 (Reapproved 2009), Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91), American Concrete Institute.
- Aiken, T.A., Kwasny, J., Sha, W. and Soutsos, M.N. (2018), "Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack", Cement Concrete Res., 111, 23-40. https://doi.org/10.1016/j.cemconres.2018.06.011.
- Allahverdi, A. and Skvara, F. (2005), "Sulfuric acid attack on hardened paste of geopolymer cements. Part 1. Mechanism of corrosion at relatively high concentrations", Ceram.-Silik., 49(4), 225-229.
- Allahverdi, A. and Skvara, F. (2006), "Sulfuric acid attack on hardened paste of geopolymer cements-part 2. Corrosion mechanism at mild and relatively low concentrations", Ceram.-Silik., 50(1), 1-4.
- Askarian, M., Tao, Z., Adam, G. and Samali, B. (2018), "Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete", Constr. Build. Mater., 186, 330-337. https://doi.org/10.1016/j.conbuildmat.2018.07.160.
- ASTM C311/C311M (2018), Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete, ASTM International, West Conshohocken, PA.
- ASTM C33/C33M (2017), Standard Specification for Concrete Aggregates, ASTM International, West Conshohocken, PA.
- ASTM C39/C39M (2013), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
- ASTM C494 (2013), Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, PA.
- ASTM C618 (2013), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA.
- ASTM C989 (2013), Standard Specification for Slag Cement for Use in Concrete and Mortars, ASTM International, West Conshohocken, PA.
- Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (2003), "Resistance of alkali-activated slag concrete to acid attack", Cement Concrete Res., 33(10), 1607-1611. https://doi.org/10.1016/S0008-8846(03)00125-X.
- Bernal, S.A., Rodriguez, E.D., Mejia de Gutierrez, R. and Provis, J.L. (2012), "Performance of alkali-activated slag mortars exposed to acids", J. Sustain. Cement Bas. Mater., 1(3), 138-151. https://doi.org/10.1080/21650373.2012.747235.
- Central Electricity Authority (CEA) (2017), Report on Fly Ash Generation at Coal/lignite Based Thermal Power Stations and its Utilization in the Country for The Year 2016-17, New Delhi.
- Dassekpo, J.B.M., Zha, X., Zhan, J. and Ning, J. (2017), "The effects of the sequential addition of synthesis parameters on the performance of alkali activated fly ash mortar", Resul. Phys., 7, 1506-1512. https://doi.org/10.1016/j.rinp.2017.04.019.
- De Ceukelaire, L. (1992), "The effects of hydrochloric acid on mortar", Cement Concrete Res., 22(5), 903-914. https://doi.org/10.1016/0008-8846(92)90114-B.
- Diaz-Loya, E.I., Allouche, E. and Vaidya, S. (2011), "Mechanical properties of fly-ash-based geopolymer concrete", ACI Mater. J., 108(3), 300-306.
- Ding, Y., Dai, J.G. and Shi, C.J. (2016), "Mechanical properties of alkali-activated concrete: A state-of-the-art review", Constr. Build. Mater., 127, 68-79. https://doi.org/10.1016/j.conbuildmat.2016.09.121.
- Duxson, P. (2009), "Geopolymer precursor design", Geopolymers: Structure, Processing, Properties and Industrial Applications, Eds. Provis, J.L. and van Deventer, J.S.J., Boca Raton, Florida.
- Fang, G., Ho, W.K., Tu, W. and Zhang, M. (2018), "Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature", Constr. Build. Mater., 172, 476-487. https://doi.org/10.1016/j.conbuildmat.2018.04.008.
-
Gomez, J.C., Calvet, N., Starace, A.K. and Glatzmaier, G.C. (2013), "Ca
$(NO_{3})_{2}-NaNO_{3}-KNO_{3}$ molten salt mixtures for direct thermal energy storage systems in parabolic trough plants", J. Sol. Energy Eng., 135(2), 021016. https://doi.org/10.1115/1.4023182. - Gu, L., Visintin, P. and Bennett, T. (2018), "Evaluation of accelerated degradation test methods for cementitious composites subject to sulfuric acid attack; application to conventional and alkali-activated concretes", Cement Concrete Compos., 87, 187-204. https://doi.org/10.1016/j.cemconcomp.2017.12.015.
- Hardjito, D. and Rangan, B.V. (2005), "Development and properties of low-calcium fly ash-based geopolymer concrete", Curtin University of Technology Research Report GC1, Curtin University, Perth, Australia.
- IS 516-1959 (2018), Methods of Tests for Strength of Concrete, Bureau of Indian Standards, New Delhi, India.
- Ismail, I., Bernal, S.A., Provis, J.L., San Nicolas, R., Hamdan, S. and van Deventer, J.S. (2014), "Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash", Cement Concrete Compos., 45, 125-135. https://doi.org/10.1016/j.cemconcomp.2013.09.006.
- Junaid, M.T. (2017), "Properties of ambient cured blended alkali activated cement concrete", IOP Conf. Ser.: Mater. Sci. Eng., 264(1), 012004. https://doi.org/10.1088/1757-899X/264/1/012004
- Junaid, M.T., Kayali, O., Khennane, A. and Black, J. (2015), "A mix design procedure for low calcium alkali activated fly ash-based concretes", Constr. Build. Mater., 79, 301-310. https://doi.org/10.1016/j.conbuildmat.2015.01.048.
- Kani, E.N., Allahverdi, A. and Provis, J.L. (2018), "Calorimetric study of geopolymer binders based on natural pozzolan", J. Therm. Anal. Calorim., 127(3), 2181-2190. https://doi.org/10.1007/s10973-016-5850-7.
- Kar, A. (2013) "Characterizations of concretes with alkali-activated binder and correlating their properties from micro-to specimen level", PhD Thesis, West Virginia University, Morgantown, West Virginia.
- Kar, A., Ray, I., Unnikrishnan, A. and Halabe, U. B. (2016), "Prediction models for compressive strength of concrete with alkali-activated binders", Comput. Concrete, 17(4), 523-539. http://dx.doi.org/10.12989/cac.2016.17.4.523.
- Ko, L.S., Belena, I., Duxson, P., Kavalerova, E., Krivenko, P.V., Ordonez, L.M., Tagnit-Hamou, A. and Winnefeld, F. (2014), "AAM concretes: standards for mix design/formulation and early-age properties", Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Eds. Provis, J.L. and van Deventer, J.S.J., Springer, Dordrecht, Netherlands.
- Kumar, S., Kumar, R. and Mehrotra, S.P. (2010), "Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer", J. Mater. Sci., 45(3), 607-615. https://doi.org/10.1007/s10853-009-3934-5.
- Lee, N.K. and Lee, H.K. (2016), "Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste", Cement Concrete Compos., 72, 168-179. https://doi.org/10.1016/j.cemconcomp.2016.06.004.
- Lloyd, R.R., Provis, J.L. and van Deventer, J.S.J. (2012), "Acid resistance of inorganic polymer binders. 1. Corrosion rate", Mater. Struct., 45(1-2), 1-14. https://doi.org/10.1617/s11527-011-9744-7.
- Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P. and Illikainen, M. (2018), "One-part alkali-activated materials: a review", Cement Concrete Res., 103, 21-34. https://doi.org/10.1016/j.cemconres.2017.10.001.
- Madavarapu, S.B. (2014), "FTIR analysis of alkali activated slag and fly ash using deconvolution techniques", M.S. Thesis, Arizona State University, Tempe, AZ.
- Mazhar, S. and GuhaRay, A. (2020), "Stabilization of expansive clay by fibre-reinforced alkali-activated binder: an experimental investigation and prediction modelling", Int. J. Geotech. Eng., 1-17. doi.org/10.1080/19386362.2020.1775358.
- Monteny, J., Vinke, E., Beeldens, A., DeBelie, N., Taerwe, L., Van Gemert, D. and Verstraete, W. (2000), "Chemical, microbiological, and in situ methods for biogenic sulfuric acid corrosion of concrete", Cement Concrete Res., 304, 623-634. https://doi.org/10.1016/S0008-8846(00)00219-2.
- Nath, P. and Sarker, P.K. (2014), "Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition", Constr. Build. Mater., 66, 163-171. https://doi.org/10.1016/j.conbuildmat.2014.05.080.
- Oelkers, E.H. and Schott, J. (1995), "Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis", Geochim. Cosmochim. Acta, 59(24), 5039-5053. https://doi.org/10.1016/0016-7037(95)00326-6.
- Pacheco-Torgal, F., Gomes, J. and Jalali, S. (2010), "Durability and environmental performance of alkali-activated tungsten mine waste mud mortars", J. Mater. Civil Eng., 22(9), 897-904. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000092.
- Palacios, M. and Puertas, F. (2011), "Effectiveness of mixing time on hardened properties of water glass activated slag pastes and mortars", ACI Mater. J., 108(1), 73-78.
- Pavlik, V. (1994), "Corrosion of hardened cement paste by acetic and nitric acids part II: formation and chemical composition of the corrosion products layer", Cement Concrete Res., 24(8), 1495-1508. https://doi.org/10.1016/0008-8846(94)90164-3.
- Provis, J.L. and van Deventer, J.S.J. (2014), Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Springer, Dordrecht,.
- Provis, J.L., Bilek, V., Buchwald, A., Dombrowski-Daube, K. and Varela, B. (2014) "Durability and testing - physical processes", Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, Eds. Provis, J.L. and van Deventer J. S. J., Springer, Dordrecht, Netherlands.
- Provis, J.L., Palomo, A. and Shi, C. (2015), "Advances in understanding alkali-activated materials", Cement Concrete Res., 78, 110-125. https://doi.org/10.1016/j.cemconres.2015.04.013.
- Ramagiri, K.K. and Kar, A. (2019), "Effect of precursor combination and elevated temperatures on the microstructure of alkali-activated binder", ICJ, 93(10), 34-43. https://doi.org/10.1016/j.matpr.2020.01.093.
- Ramagiri, K.K., Chauhan, D., Gupta, S., Kar, A. and Adak, D. (2020), "Evaluation of structural performance of concrete with ambient-cured alkali-activated binders", Proceedings of SECON'19, SECON 2019, Lecture Notes in Civil Engineering, Springer, 46, May.
- Rangan, B. (2010), "Design and manufacture of fly-ash based geopolymer concrete", Concr. Aust., 34(2), 37-43.
- Rangan, B.V. (2008), "Low-calcium fly-ash-based geopolymer concrete", Concrete Construction Engineering Handbook, Ed. Nawy, E.G., CRC Press, New York.
- Rashad, A.M. (2013), "Properties of alkali-activated fly ash concrete blended with slag", Iran. J. Mater. Sci. Eng., 10(1), 57-64.
- Shekhovtsova, J., Kovtun, M. and Kearsley, E.P. (2015), "Evaluation of short-and long-term properties of heat-cured alkali-activated fly ash concrete", Mag. Concrete Res., 67(16), 897-905. https://doi.org/10.1680/macr.14.00377.
- Shi, C. (2003), "Corrosion resistance of alkali-activated slag cement", Adv. Cement Res., 15(2), 77-81. https://doi.org/10.1680/adcr.2003.15.2.77.
- Shi, C. and Stegmann, J.A. (2000), "Acid corrosion resistance of different cementing materials", Cement Concrete Res., 30(5), 803-808. https://doi.org/10.1016/S0008-8846(00)00234-9.
- Song, X., Marosszeky, M., Brungs, M. and Munn, R. (2005), "Durability of fly ash based geopolymer concrete against sulphuric acid attack", 10th International Conference on the Durability of Building Materials and Components, Lyon, France.
- Temuujin, J., Minjigmaa, A., Lee, M., Chen-Tan, N. and Van Riessen, A. (2011), "Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions", Cement Concrete Compos., 33(10), 1086-1091. https://doi.org/10.1016/j.cemconcomp.2011.08.008.
- Wallah, S.E. and Rangan. B.V. (2006), "Low-calcium fly ash-based geopolymer concrete: long-term properties", Curtin University of Technology, Perth, Australia.
- Xie, J., Wang, J., Rao, R., Wang, C. and Fang, C. (2019), "Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate", Compos. Part B: Eng., 164, 179-190. https://doi.org/10.1016/j.compositesb.2018.11.067.
- Ye, H. and Huang, L. (2020)", Degradation mechanisms of alkali-activated binders in sulfuric acid: The role of calcium and aluminum availability", Constr. Build. Mater., 246, 118477. https://doi.org/10.1016/j.conbuildmat.2020.118477.
- Yip, C., Lukey, G.C., Provis, J.L. and van Deventer, J.S.J. (2008), "Effect of calcium silicate sources on geopolymerization", Cement Concrete Res., 38(4), 554-564. https://doi.org/10.1016/j.cemconres.2007.11.001.
- Yip, C.K., Lukey, G.C. and Van Deventer, J.S. (2005), "The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation", Cement Concrete Res., 35(9), 1688-1697. https://doi.org/10.1016/j.cemconres.2004.10.042.
- Zhang, W., Yao, X., Yang, T. and Zhang, Z. (2018), "The degradation mechanisms of alkali-activated fly ash/slag blend cements exposed to sulphuric acid", Constr. Build. Mater., 186, 1177-1187. https://doi.org/10.1016/j.conbuildmat.2018.08.050.
- Zhao, M., Zhang, X. and Zhang, Y.J. (2011), "Resistance of hydrated cement paste to acid attack and kinetics analysis of corrosion", Adv. Mater. Res., 163, 3133-3137. https://doi.org/10.4028/www.scientific.net/AMR.163-167.3133.
Cited by
- Cradle-to-Gate Life Cycle and Economic Assessment of Sustainable Concrete Mixes-Alkali-Activated Concrete (AAC) and Bacterial Concrete (BC) vol.6, pp.7, 2020, https://doi.org/10.3390/infrastructures6070104