DOI QR코드

DOI QR Code

Out-of-plane ductile failure of notch: Evaluation of Equivalent Material Concept

  • Torabi, A.R. (Fracture Research Laboratory, Faculty of New Sciences and Technologies, University of Tehran) ;
  • Saboori, Behnam (Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Kamjoo, M.R. (Fracture Research Laboratory, Faculty of New Sciences and Technologies, University of Tehran)
  • 투고 : 2019.07.08
  • 심사 : 2020.03.15
  • 발행 : 2020.09.10

초록

In the present study, the fracture toughness of U-shaped notches made of aluminum alloy Al7075-T6 under combined tension/out-of-plane shear loading conditions (mixed mode I/III) is studied by theoretical and experimental methods. In the experimental part, U-notched test samples are loaded using a previously developed fixture under mixed mode I/III loading and their load-carrying capacity (LCC) is measured. Then, due to the presence of considerable plasticity in the notch vicinity at crack initiation instance, using the Equivalent Material Concept (EMC) and with the help of the point stress (PS) and mean stress (MS) brittle failure criteria, the LCC of the tested samples is predicted theoretically. The EMC equates a ductile material with a virtual brittle material in order to avoid performing elastic-plastic analysis. Because of the very good match between the EMC-PS and EMC-MS combined criteria with the experimental results, the use of the combination of the criteria with EMC is recommended for designing U-notched aluminum plates in engineering structures. Meanwhile, because of nearly the same accuracy of the two criteria and the simplicity of the PS criterion relations, the use of EMC-PS failure model in design of notched Al7075-T6 components is superior to the EMC-MS criterion.

키워드

참고문헌

  1. Ashby, M.F. (2005), Materials Selection in Mechanical Design, MRS Bull.
  2. ASTM B646-19 (2019), Standard Practice for Fracture Toughness Testing of Aluminum Alloys, ASTM International; West Conshohocken, PA.
  3. ASTM E8 / E8M-16a (2016), Standard Test Methods for Tension Testing of Metallic Materials, ASTM International; West Conshohocken, PA.
  4. Ayatollahi, M.R. and Saboori, B. (2015), "A new fixture for fracture tests under mixed mode I/III loading", European J. Mech. A/Solids, 51(0), 67-76. https://doi.org/10.1016/j.euromechsol.2014.09.012.
  5. Ayatollahi, M.R. and Torabi, A.R. (2010a), "Brittle fracture in rounded-tip V-shaped notches", Mater. Design 31(1), 60-67. https://doi.org/10.1016/j.matdes.2009.07.017.
  6. Ayatollahi, M.R. and Torabi, A.R. (2010b), "Investigation of mixed mode brittle fracture in rounded-tip V-notched components", Eng. Fracture Mech., 77(16), 3087-3104. https://doi.org/10.1016/j.engfracmech.2010.07.019.
  7. Cicero, S., Torabi, A.R., Madrazo, V. and Azizi, P. (2018), "Prediction of fracture loads in PMMA U-notched specimens using the equivalent material concept and the theory of critical distances combined criterion", Fatigue Fracture Eng. Maer. Struct., 41(3), 688-699. https://doi.org/10.1111/ffe.12728.
  8. El Minor, H., Pluvinage, G. and Azari, Z. (2007), "An elliptical fracture criterion for mixed mode fracture I+ II emanating from notches", Struct. Eng. Mech., 26(1), 87-97. https://doi.org/10.12989/sem.2007.26.1.087.
  9. Erdogan, F. and Sih, G.C. (1963), "On the Crack Extension in Plates Under Plane Loading and Transverse Shear", J. Basic Eng., 85(4), 519-525. https://doi.org/10.1115/1.3656897.
  10. Fuentes, J.D., Cicero, S., Berto, F., Torabi, A.R., Madrazo, V. and Azizi, P. (2018), "Estimation of Fracture Loads in AL7075-T651 Notched Specimens Using the Equivalent Material Concept Combined with the Strain Energy Density Criterion and with the Theory of Critical Distances", Metals, 8(2), 87. https://doi.org/10.3390/met8020087.
  11. Glinka, G. (1985), "Energy density approach to calculation of inelastic strain-stress near notches and cracks", Eng. Fracture Mech., 22(3), 485-508. https://doi.org/10.1016/0013-7944(85)90148-1.
  12. Gomez, F.J., Elices, M., Berto, F. and Lazzarin, P. (2007), "Local strain energy to assess the static failure of U-notches in plates under mixed mode loading", J. Fracture 145(1), 29-45. https://doi.org/10.1007/s10704-007-9104-3.
  13. Gomez, F.J., Elices, M., Berto, F. and Lazzarin, P. (2008), "A generalised notch stress intensity factor for U-notched components loaded under mixed mode", Eng. Fracture Mech., 75(16), 4819-4833. http://doi.org/10.1016/j.engfracmech.2008.07.001.
  14. Gomez, F.J., Elices, M., Berto, F. and Lazzarin, P. (2009), "Fracture of V-notched specimens under mixed mode (I + II) loading in brittle materials", J. Fracture 159(2), 121-135. https://doi.org/10.1007/s10704-009-9387-7.
  15. Haeri, H., Sarfarazi, V. and Zhu, Z. (2018), "PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test", Struct. Eng. Mech., 68(4), 497-505. https://doi.org/10.12989/sem.2018.68.4.497.
  16. Lee, K.-L. (2010), "Mechanical behavior and buckling failure of sharp-notched circular tubes under cyclic bending", Struct. Eng. Mech., 34(3), 367-376. https://doi.org/10.12989/sem.2010.34.3.367.
  17. Lee, K.-L., Chang, K.-H. and Pan, W.-F. (2016), "Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending", Struct. Eng. Mech., 60(3), 387-404. https://doi.org/10.12989/sem.2016.60.3.387.
  18. Molski, K. and Glinka, G. (1981), "A method of elastic-plastic stress and strain calculation at a notch root", Mater. Sci. Eng., 50(1), 93-100. https://doi.org/10.1016/0025-5416(81)90089-6.
  19. Pook, L. (2013), "A 50-year retrospective review of threedimensional effects at cracks and sharp notches", Fatigue Fracture Eng. Maer. Struct., 36(8), 699-723. https://doi.org/10.1111/ffe.12074.
  20. Pook, L.P., Berto, F. and Campagnolo, A. (2017), "State of the art of corner point singularities under in-plane and out-of-plane loading", Eng. Fracture Mech., 174, 2-9. https://doi.org/10.1016/j.engfracmech.2016.10.001.
  21. Pook, L.P., Campagnolo, A. and Berto, F. (2016), "Coupled fracture modes of discs and plates under anti-plane loading and a disc under in-plane shear loading", Fatigue Fracture Eng. Maer. Struct., 39(8), 924-938. https://doi.org/10.1111/ffe.12389.
  22. Saboori, B., Ayatollahi, M.R., Torabi, A.R. and Berto, F. (2016), "Mixed mode I/III brittle fracture in round-tip V-notches", Theoretical Appl. Fracture Mech., 83, 135-151. https://doi.org/10.1016/j.tafmec.2015.12.002.
  23. Saboori, B., Torabi, A., Berto, F. and Razavi, S. (2018), "Averaged strain energy density to assess mixed mode I/III fracture of Unotched GPPS samples", Struct. Eng. Mech., 65(6), 699-706. https://doi.org/10.12989/sem.2018.65.6.699.
  24. Saboori, B., Torabi, A.R., Ayatollahi, M.R. and Berto, F. (2017), "Experimental verification of two stress-based criteria for mixed mode I/III brittle fracture assessment of U-notched components", Eng. Fracture Mech., 182, 229-244. https://doi.org/10.1016/j.engfracmech.2017.06.005.
  25. Saboori, B., Torabi, A.R. and Keshavarz Mohammadian, S. (2018), "Experimental and stress-based theoretical studies on mixed mode I/III fracture of round-tip V-notched Polystyrene specimens", Theoretical Appl. Fracture Mech., 95, 283-305. https://doi.org/10.1016/j.tafmec.2018.03.008.
  26. Sapora, A. and Firrao, D. (2017), "Finite fracture mechanics predictions on the apparent fracture toughness of as-quenched Charpy V-type AISI 4340 steel specimens", Fatigue Fracture Eng. Maer. Struct., 40(6), 949-958. https://doi.org/10.1111/ffe.12555.
  27. Sarfarazi, V., Haeri, H., Ebneabbasi, P. and Bagheri, K. (2019), "Simulation of the tensile behaviour of layered anisotropy rocks consisting internal notch", Struct. Eng. Mech., 69(1), 51-67. https://doi.org/10.12989/sem.2018.69.1.051.
  28. Seweryn, A. (1994), "Brittle fracture criterion for structures with sharp notches", Eng. Fracture Mech., 47(5), 673-681. https://doi.org/10.1016/0013-7944(94)90158-9.
  29. Susmel, L. and Taylor, D. (2008), "The theory of critical distances to predict static strength of notched brittle components subjected to mixed-mode loading", Eng. Fracture Mech., 75(3), 534-550. https://doi.org/10.1016/j.engfracmech.2007.03.035.
  30. Torabi, A. and Alaei, M. (2016), "Application of the equivalent material concept to ductile failure prediction of blunt V-notches encountering moderate-scale yielding", J. Damage Mech., 25, 853-877. https://doi.org/10.1177/1056789515625451.
  31. Torabi, A. and Berto, F. (2014), "Mixed mode fracture assessment of U-notched graphite Brazilian disk specimens by means of the local energy", Struct. Eng. Mech., 50(6), 723-740. https://doi.org/10.12989/sem.2014.50.6.723.
  32. Torabi, A.R. (2012a), "Estimation of tensile load-bearing capacity of ductile metallic materials weakened by a V-notch: The equivalent material concept", Mater. Sci. Eng. A, 536, 249-255. https://doi.org/10.1016/j.msea.2012.01.007.
  33. Torabi, A.R. (2012b), "On the use of the equivalent material concept to predict tensile load-bearing capacity of ductile steel bolts containing V-shaped threads", Eng. Fracture Mech., 97, 136-147. https://doi.org/10.1016/j.engfracmech.2012.10.021.
  34. Torabi, A.R. (2013), "Ultimate bending strength evaluation of Unotched ductile steel samples under large-scale yielding conditions", J. Fracture 180, 261-268. https://doi.org/10.1007/s10704-013-9804-9.
  35. Torabi, A.R. and Alaei, M. (2015), "Mixed-mode ductile failure analysis of V-notched Al 7075-T6 thin sheets", Eng. Fracture Mech., 150, 70-95. https://doi.org/10.1016/j.engfracmech.2015.10.037.
  36. Torabi, A.R., Berto, F., Campagnolo, A. and Akbardoost, J. (2017), "Averaged strain energy density criterion to predict ductile failure of U-notched Al 6061-T6 plates under mixed mode loading", Theoretical Appl. Fracture Mech., 91, 86-93. https://doi.org/10.1016/j.tafmec.2017.04.010.
  37. Torabi, A.R., Berto, F. and Razavi, S.M.J. (2018), "Ductile failure prediction of thin notched aluminum plates subjected to combined tension-shear loading", Theoretical Appl. Fracture Mech., 97, 280-288. https://doi.org/10.1016/j.tafmec.2017.05.003.
  38. Torabi, A.R., Berto, F. and Sapora, A. (2019), "Finite fracture mechanics assessment in moderate and large scale yielding regimes", Metals, 9(5), 602. https://doi.org/10.3390/met9050602.
  39. Torabi, A.R., Campagnolo, A. and Berto, F. (2016a), "Mixed mode I/II crack initiation from U-notches in Al 7075-T6 thin plates by large-scale yielding regime", Theoretical Appl. Fracture Mech., 86, 284-291. https://doi.org/10.1016/j.tafmec.2016.08.002.
  40. Torabi, A.R., Campagnolo, A. and Berto, F. (2016b), "A successful combination of the equivalent material concept and the averaged strain energy density criterion for predicting crack initiation from blunt V-notches in ductile aluminum plates under mixed mode loading", Physical Mesomechanics, 19, 382-391. https://doi.org/10.1134/S1029959916040056.
  41. Torabi, A.R., Campagnolo, A. and Berto, F. (2017), "Large-Scale Yielding Failure Prediction of Notched Ductile Plates by Means of the Linear Elastic Notch Fracture Mechanics", Strength Mater., 49(2), 224-233. https://doi.org/10.1007/s11223-017-9861-9.
  42. Torabi, A.R. and Habibi, R. (2016), "Investigation of ductile rupture in U-notched Al 6061-T6 plates under mixed mode loading", Fatigue Fracture Eng. Mater Struct., 39, 551-565. https://doi.org/10.1111/ffe.12376.
  43. Torabi, A.R., Kalantari, M.H. and Aliha, M.R.M. (2018), "Fracture analysis of dissimilar Al-Al friction stir welded joints under tensile/shear loading", Fatigue Fracture Eng. Maer. Struct., 41(9), 2040-2053. https://doi.org/10.1111/ffe.12841.
  44. Torabi, A.R. and Kamyab, M. (2019a), "The fictitious material concept", Eng. Fracture Mech., 209, 17-31. https://doi.org/10.1016/j.engfracmech.2019.01.022.
  45. Torabi, A.R. and Kamyab, M. (2019b), "Mixed mode I/II failure prediction of thin U-notched ductile steel plates with significant strain-hardening and large strain-to-failure: The Fictitious Material Concept", European J. Mech. A/Solids, 75, 225-236. https://doi.org/10.1016/j.euromechsol.2019.02.004.
  46. Torabi, A.R. and Kamyab, M. (2019c), "Notch ductile failure with significant strain-hardening: The modified equivalent material concept", Fatigue Fracture Eng. Maer. Struct., 42(2), 439-453. https://doi.org/10.1111/ffe.12921.
  47. Torabi, A.R. and Keshavarzian, M. (2016), "Evaluation of the load-carrying capacity of notched ductile plates under mixed mode loading", Theoretical Appl. Fracture Mech., 85, 375-386. https://doi.org/10.1016/j.tafmec.2016.04.009.
  48. Torabi, A.R. and Mohammad Hosseini, B. (2017), "Large plasticity induced crack initiation from U-notches in thin aluminum sheets under mixed mode loading", Eng. Solid Mech., 5(1), 39-60. https://doi.org/10.5267/j.esm.2016.10.001.
  49. Torabi, A.R., Rahimi, A.S. and Ayatollahi, M.R. (2018), "Fracture study of a ductile polymer-based nanocomposite weakened by blunt V-notches under mode I loading: Application of the Equivalent Material Concept", Theoretical Appl. Fracture Mech., 94, 26-33. https://doi.org/10.1016/j.tafmec.2018.01.002.
  50. Torabi, A.R. and Saboori, B. (2018), "Experimental and theoretical investigation of mixed mode I/III brittle fracture of U-notched polystyrene components", J. Strain Analysis for Eng. Design, 53(1), 15-25. https://doi.org/10.1177/0309324717739725.
  51. Torabi, A.R., Saboori, B., Mohammadian, S.K. and Ayatollahi, M.R. (2018), "Brittle failure of PMMA in the presence of blunt V-notches under combined tension-tear loading: Experiments and stress-based theories", Polym. Testing, 72, 94-109. https://doi.org/10.1016/j.polymertesting.2018.10.002.
  52. Wieghardt, K., Sommerfeld, A. and Rossmanith, H. (1995), "On splitting and cracking of elastic bodies", Fatigue Fracture Eng. Maer. Struct., 18(12), 1371-1405. https://doi.org/10.1111/j.1460-2695.1995.tb00864.x.