Acknowledgement
The author is grateful to acknowledge that this study is financed by the Ministry of Science and Technology, Taiwan, R.O.C., under Grant No. MOST-107-2221-E-027-011.
References
- Alamatian, J. (2013), "New implicit higher order time integration for dynamic analysis", Struct. Eng. Mech., 48(5), 711-736. https://doi.org/ 10.12989/sem.2013.48.5.711
- Armero, F. and Romero, I. (2001), "On the formulation of highfrequency dissipative time-stepping algorithms for non-linear dynamics. Part II: Second-order methods", Comput. Methods Appl. Mech. Eng., 190, 6783-6824. https://doi.org/10.1016/S0045-7825(01)00233-X
- Belytschko, T. and Hughes, T.J.R. (1983), Computational Methods for Transient Analysis, Elsevier Science Publishers B.V., North-Holland, Amsterdam.
- Chang, S.Y. (1997), "Improved numerical dissipation for explicit methods in pseudodynamic tests", Earthq. Eng. Struct. Dynam., 26, 917-929. https://doi.org/10.1002/(SICI)1096-9845(199709)26:9<917:AID-EQE685>3.0.CO;2-9
-
Chang, S.Y. (2000), "The
$\gamma$ -function pseudodynamic algorithm", J. Earthq. Eng., 4(3), 303-320. https://doi.org/10.1080/13632460009350373 - Chang, S.Y. (2001), "Analytical study of the superiority of the momentum equations of motion for impulsive loads", Comput. Struct., 79(15), 1377-1394. https://doi.org/10.1016/S0045-7949(01)00044-X.
- Chang, S.Y. (2002), "Explicit pseudodynamic algorithm with unconditional stability", J. Eng. Mech. ASCE, 128(9), 935-947. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935).
- Chang, S.Y. (2006), "Accurate representation of external force in time history analysis", J. Eng. Mech. ASCE, 132(1), 34-45. https://doi.org/10.1061/(ASCE\)0733-9399(2006)132:1(34).
- Chang, S.Y. (2007), "Improved explicit method for structural dynamics", J. Eng. Mech. ASCE, 133(7), 748-760. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(748).
- Chang, S.Y. (2009), "An explicit method with improved stability property", J. Numerical Method Eng., 77(8), 1100-1120. https://doi.org/10.1002/nme.2452.
- Chang, S.Y. (2010), "A new family of explicit method for linear structural dynamics", Comput. Struct., 88(11-12), 755-772. https://doi.org/10.1016/j.compstruc.2010.03.002.
- Chang, S.Y. (2014a), "A Family of non-iterative integration methods with desired numerical dissipation", J. Numerical Methods Eng., 100(1), 62-86. https://doi.org/10.1002/nme.4720.
- Chang, S.Y. (2014b), "Family of structure-dependent explicit methods for structural dynamics", J. Eng. Mech. ASCE, 140(6). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000748.
- Chang, S.Y. (2015a), "Discussion of paper 'Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation' by Chinmoy Kolay and James M. Ricles, Earthquake Engineering and Structural Dynamics 2014; 43: 1361-1380," Earthq. Eng. Struct. Dynam., 44(2), 325-328. https://doi.org/10.1002/eqe.2514.
- Chang, S.Y. (2015b), "Dissipative, non-iterative integration algorithms with unconditional stability for mildly nonlinear structural dynamics", Nonlinear Dynamics, 79(2), 1625-1649. https://doi.org/10.1007/s11071-014-1765-7.
- Chang, S.Y. (2015c), "A general technique to improve stability property for a structure-dependent integration method", J. Numerical Methods Eng., 101(9), 653-669. https://doi.org/10.1002/nme.4806.
- Chang, S.Y. (2017), "Assessments of dissipative structuredependent integration methods", Struct. Eng. Mech., 62(2), 151-162. https://doi.org/10.12989/sem.2017.62.2.151.
- Chang, S.Y. (2018a), "Performances of non-dissipative structuredependent integration methods," Struct. Eng. Mech., 65(1), 91-98. https://doi.org/ 10.12989/sem.2018.65.1.091.
- Chang, S.Y. (2018b), "Elimination of overshoot in forced vibration response for Chang explicit family methods", J. Eng. Mech. ASCE, 144(2). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001401.
- Chang, S.Y., (2018c), "An unusual amplitude growth property and its remedy for structure-dependent integration methods", Comput. Methods Appl. Mech. Eng., 330, 498-521. https://doi.org/10.1016/j.cma.2017.11.012.
- Chang, S.Y. and Mahin, S.A. (1993), "Two new implicit algorithms of pseudodynamic test methods," J. Chinese Institute Eng., 16(5), 651-664. https://doi.org/10.1080/02533839.1993.9677539.
- Chang, S.Y., Wu, T.H. and Tran, N.C. (2015), "A family of dissipative structure-dependent integration methods", Struct. Eng. Mech., 55(4), 815-837. https://doi.org/10.12989/sem.2015.55.4.815.
- Chang, S.Y., Wu, T.H. and Tran, N.C. (2016), "Improved formulation for a structure-dependent integration method", Struct. Eng. Mech., 60(1), 149-162. https://doi.org/10.12989/sem.2016.60.1.149.
- Chang, S.Y. (2019). "A dual family of dissipative structuredependent integration methods for structural nonlinear dynamics", Nonlinear Dynam., 98(1), 703-734. https://doi.org/10.1007/s11071-019-05223-y.
-
Chung, J. and Hulbert, G.M. (1993), "A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-
${\alpha}$ method", J. Appl. Mech., 60(6), 371-375. https://doi.org/10.1115/1.2900803. - Chen, C. and Ricles, J.M. (2008), "Development of direct integration algorithms for structural dynamics using discrete control theory", Earthq. Eng. Struct. Dynam., 134(8), 76-683. https://doi.org/ 10.1061/(ASCE)0733-9399(2008)134:8(676).
- Civalek, O. (2007), "Nonlinear dynamic response of MDOF systems by the method of harmonic differential quadrature (HDQ)", Struct. Eng. Mech., 25(2), 201-217. https://doi.org/10.12989/sem.2007.25.2.201.
- Clough, R. and Penzien, J. (2003), Dynamics of Structures, Third Edition, Mcgraw-Hill, USA.
- Dahlquist, G. (1956), "Convergence and stability in the numerical integration of ordinary differential equations", Mathematica Scandinavica, 4, 33-53. https://doi.org/ https://doi.org/10.7146/math.scand.a-10454.
- Dahlquist, G. (1963), "A special stability problem for linear multistep methods", BIT, 3, 27-43. https://doi.org/10.1007/BF01963532.
- Du, X., Yang, D., Zhou, J., Yan, X., Zhao, Y. and Li, S. (2018), "New explicit integration algorithms with controllable numerical dissipation for structural dynamics", J. Struct. Stability Dynam., 18(3), 1850044. https://doi.org/ 10.1142/S021945541850044X
- Gao, Q., Wu, F., Zhang, H.W., Zhong, W.X., Howson, W.P. and Williams, F.W. (2012), "A fast precise integration method for structural dynamics problems", Struct. Eng. Mech., 43(1), 1-13. https://doi.org/10.12989/sem.2012.43.1.001
- Geradin, M. and Rixen, D. (1994), Mechanical Vibrations Theory and Application to Structural Dynamics, John Wiley and Sons Inc., USA.
- Goudreau, G.L. and Taylor, R.L. (1972), "Evaluation of numerical integration methods in elasto-dynamics", Computer Methods in Applied Mechanics and Engineering, 2, 69-97. https://doi.org/10.1016/0045-7825(73)90023-6.
- Gui, Y., Wang, J.T., Jin, F., Chen, C. and Zhou, M.X. (2014), "Development of a family of explicit algorithms for structural dynamics with unconditional stability", Nonlinear Dynam., 77(4), 1157-1170. https://doi.org/ 10.1007/s11071-014-1368-3
- Hadianfard, M.A. (2012), "Using integrated displacement method to time-history analysis of steel frames with nonlinear flexible connections", Struct. Eng. Mech., 41(5), 675-689. https://doi.org/10.12989/sem.2012.41.5.675
- Har, J., and Tamma, K.K. (2012), Advances in Computational Dynamics of Particles, Materials and Structures, John Wiley and Sons Inc. https://doi.org/ 10.1002/9781119965893.
- Hilber, H.M., Hughes, T.J.R. and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dynam., 5, 283-292. https://doi.org/10.1002/eqe.4290050306.
- Hilber, H.M. and Hughes, T.J.R. (1978), "Collocation, dissipation, and 'overshoot' for time integration schemes in structural dynamics", Earthq. Eng. Struct. Dynam., 6, 99-118. https://doi.org/10.1002/eqe.4290060111.
- Hughes, T.J.R. (1987), The Finite Element Method, Prentice-Hall, Inc., Englewood Cliffs, N.J., U.S.A.
- Kim, W. and Lee, J.H. (2018), "An improved explicit time integration method for linear and nonlinear structural dynamics", Comput. Struct., 206, 42-53. https://doi.org/10.1016/j.compstruc.2018.06.005
- Kim, W. and Choi, S.Y. (2018), "An improved implicit time integration algorithm: The generalized composite time integration algorithm", Comput. Struct., 196, 341-354. https://doi.org/ 10.1016/j.compstruc.2017.10.002.
- Kim, W. (2019), "A simple explicit single step time integration algorithm for structural dynamics", J. Numerical Method Eng., 1-21. https://doi.org/ 10.1002/nme.6054
- Kolay, C. and Ricles, J.M. (2014), "Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation", Earthq. Eng. Struct. Dynam., 43, 1361-1380. https://doi.org/ 10.1002/eqe.2401.
- Lax, P.D. and Richmyer, R.D. (1956) "Survey of the stability of linear difference equations", Communications on Pure and Appl. Math., 9, 267-293. https://doi.org/ 10.1007/0-387-28148-7_11.
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Division, ASCE, 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098
- Park, K.C. (1975), "An improved stiffly stable method for direct integration of nonlinear structural dynamic equations", J. Appl. Mech., 42, 464-470. https://doi.org/10.1115/1.3423600.
- Rezaiee-Pajand, M., Esfehani, S.A.H. and Karimi-Rad, M. (2018) "Highly accurate family of time integration method", Struct. Eng. Mech., 67(6), 603-614. https://doi.org/10.12989/sem.2018.67.6.603.
- Shojaee, S., Rostami, S. and Abbasi, A. (2015), "An unconditionally stable implicit time integration algorithm: Modified quartic B-spline method", Comput. Struct., 153, 98-111. https://doi.org/10.1016/j.compstruc.2015.02.030
- Soares, D. (2014), "An explicit family of time marching procedures with adaptive dissipation control", J. Numerical Methods Eng., 100, 165-182. https://doi.org/10.1002/nme.4722
- Su, C. and Xu, R. (2014), "Random vibration analysis of structures by a time-domain explicit formulation method", Struct. Eng. Mech., 52(2), 239-260. https://doi.org/10.12989/sem.2014.52.2.239
- Tang, Y. and Lou, M.L. (2017), "New unconditionally stable explicit integration algorithm for real-time hybrid testing", J. Eng. Mech., 143(7), 04017029. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001235.
- Wen, W.B., Wei, K., Lei, H.S., Duan, S.Y. and Fang, Y.N. (2017), "A novel sub-step composite implicit time integration scheme for structural dynamics", Comput. Struct., 172, 176-186. https://doi.org/ 10.1016/j.compstruc.2016.11.018
- Wilson, E.I. Farhoomand, I. and Bathe, K.J. (1973), "Nonlinear dynamic analysis of complex structures", Earthq. Eng. Struct. Dynam., 1, 241-252. https://doi.org/10.1002/eqe.4290010305
- Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1981), "An alpha modification of Newmark's method", J. Numerical Methods Eng., 15, 1562-1566. https://doi.org/10.1002/nme.1620151011
- Xing, Y., Ji, Y. and Zhang, H. (2019) "On the construction of a type of composite time integration methods", Comput. Struct., 221, 157-178. https://doi.org/10.1016/j.compstruc.2019.05.019
- Zhou, X, Tamma, K.K. (2004), "Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics." J. Numerical Methods Eng., 59, 597-668. https://doi.org/10.1002/nme.873