DOI QR코드

DOI QR Code

Influence of hydrogen concentration on burst parameters of Zircaloy-4 cladding tube under simulated loss-of-coolant accident

  • Suman, Siddharth (Department of Mechanical Engineering, Indian Institute of Technology Patna)
  • Received : 2020.01.03
  • Accepted : 2020.02.14
  • Published : 2020.09.25

Abstract

Single-tube burst tests on hydrogenated Zircaloy-4 nuclear fuel cladding under simulated loss-of-coolant accident are conducted to evaluate the impact of hydrogen on burst parameters. The heating rate and initial pressure are varied from 5 K/s to 150 K/s and 5 bar-80 bar, respectively. The hydrogen concentration in the cladding is in the range of 0-2000 wppm. Burst stress is lower for hydrogenated cladding in α-phase. A significant loss of ductility is observed in α-phase and lower α + β-phase for hydrogenated cladding. However, the burst strain is higher for hydrogenated cladding in β-phase. There is a sigmoidal dependency of rupture area with initial stress and rupture area is larger for hydrogenated cladding. A novel burst stress correlation for hydrogenated Zircaloy-4 cladding has been proposed.

Keywords

References

  1. S. Banerjee, P. Mukhopadhyay, Chapter 1 phases and crystal structures, in: Pergamon Mater. Ser., Elsevier, 2007, pp. 3-86, https://doi.org/10.1016/S1470-1804(07)80054-X.
  2. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Effects of hydrogen on thermal creep behaviour of Zircaloy fuel cladding, J. Nucl. Mater. 498 (2018) 20-32, https://doi.org/10.1016/J.JNUCMAT.2017.10.015.
  3. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, J.K. Chakravartty, Hydrogen in zircaloy: mechanism and its impacts, Int. J. Hydrogen Energy 40 (2015) 5976-5994, https://doi.org/10.1016/J.IJHYDENE.2015.03.049.
  4. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, 3D simulation of hydride-assisted crack propagation in zircaloy-4 using XFEM, Int. J. Hydrogen Energy 42 (2017) 18668-18673, https://doi.org/10.1016/J.IJHYDENE.2017.04.163.
  5. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Effects of d-hydride precipitated at a crack tip on crack instability in Zircaloy-4, Int. J. Energy Res. 42 (2018) 284-292, https://doi.org/10.1002/er.3905.
  6. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Effects of hydride on crack propagation in zircaloy-4, Procedia Eng 173 (2017) 1185-1190, https://doi.org/10.1016/j.proeng.2016.12.105.
  7. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Investigation of elevatedtemperature mechanical properties of ${\delta}$-hydride precipitate in Zircaloy-4 fuel cladding tubes using nanoindentation, J. Alloys Compd. 726 (2017) 107-113, https://doi.org/10.1016/J.JALLCOM.2017.07.321.
  8. S. Saito, K. Ishijima, S. Shiozawa, K. Iwata, Effects of rod pre-pressurization on light water reactor fuel behavior during reactivity initiated accident conditions, J. Nucl. Sci. Technol. 19 (1982) 289-306, https://doi.org/10.3327/jnst.19.289.
  9. B. Brzoska, F. Depisch, H.P. Fuchs, W. Sauermann, Parameter study on the influence of prepressurization on PWR fuel ROD behavior during normal operation and hypothetical locas, Nucl. Technol. (1978) 205-212, https://doi.org/10.13182/nt79-a32318.
  10. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, J.K. Chakravartty, Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident, Nucl. Eng. Des. 307 (2016) 319-327, https://doi.org/10.1016/J.NUCENGDES.2016.07.022.
  11. S. Suman, Burst criterion for Indian PHWR fuel cladding under simulated lossof-coolant accident, Nucl. Eng. Technol. 51 (2019) 1525-1531. https://doi.org/10.1016/j.net.2019.04.004.
  12. J.-C. Brachet, L. Portier, T. Forgeron, J. Hivroz, D. Hamon, T. Guilbert, T. Bredel, P. Yvon, J.-P. Mardon, P. Jacques, Influence of hydrogen content on the ${\alpha}/{\beta}$ phase transformation temperatures and on the thermal-mechanical behavior of Zy-4, M4 (ZrSnFeV), and $M5^{TM}$ (ZrNbO) alloys during the first phase of LOCA transient, in: Zircon. Nucl. Ind. Thirteen. Int. Symp., 2009, https://doi.org/10.1520/stp11411s, 673-673-29.
  13. J.H. Kim, B.K. Choi, J.H. Baek, Y.H. Jeong, Effects of oxide and hydrogen on the behavior of Zircaloy-4 cladding during the loss of the coolant accident (LOCA), Nucl. Eng. Des. 236 (2006) 2386-2393, https://doi.org/10.1016/j.nucengdes.2006.02.012.
  14. H. Uetsuka, T. Furuta, S. Kawasaki, Failure-bearing capability of oxidized zircaloy-4 cladding under simulated loss-of-coolant condition, J. Nucl. Sci. Technol. 20 (1983) 941-950, https://doi.org/10.1080/18811248.1983.9733491.
  15. F. Nagase, T. Fuketa, Effect of pre-hydriding on thermal shock resistance of zircaloy-4 cladding under simulated loss-of-coolant accident conditions, J. Nucl. Sci. Technol. 41 (2004) 723-730, https://doi.org/10.1080/18811248.2004.9715539.
  16. F. Nagase, T. Fuketa, Behavior of pre-hydrided zircaloy-4 cladding under simulated LOCA conditions, J. Nucl. Sci. Technol. 42 (2005) 209-218, https://doi.org/10.3327/jnst.42.209.
  17. M.K. Khan, M. Pathak, S. Suman, A. Deo, R. Singh, Burst investigation on zircaloy-4 claddings in inert environment, Ann. Nucl. Energy 69 (2014) 292-300, https://doi.org/10.1016/J.ANUCENE.2014.02.017.
  18. P. Bouffioux, N. Rupa, Impact of hydrogen on plasticity and creep of unirradiated Zircaloy-4 cladding tubes, in: ASTM Spec. Tech. Publ., ASTM, 2000, pp. 399-422, https://doi.org/10.1520/stp14310s.
  19. T.K. Sawarn, S. Banerjee, K.M. Pandit, S. Anantharaman, Study of clad ballooning and rupture behavior of fuel pins of Indian PHWR under simulated LOCA condition, Nucl. Eng. Des. 280 (2014) 501-510, https://doi.org/10.1016/J.NUCENGDES.2014.10.011.
  20. F.J. Erbacher, H.J. Neitzel, H. Rosinger, H. Schmidt, K. Wiehr, Burst criterion of zircaloy fuel claddings in a loss-of-coolant accident, in: ASTM Spec. Tech. Publ., ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 1982, pp. 271-283, https://doi.org/10.1520/stp37058s,19428-2959.
  21. H.E. Rosinger, A model to predict the failure of zircaloy-4 fuel sheathing during postulated loca conditions, J. Nucl. Mater. 120 (1984) 41-54. https://doi.org/10.1016/0022-3115(84)90169-7

Cited by

  1. Deep neural network based prediction of burst parameters for Zircaloy-4 fuel cladding during loss-of-coolant accident vol.52, pp.11, 2020, https://doi.org/10.1016/j.net.2020.04.025
  2. Impact of hydrogen on rupture behaviour of Zircaloy-4 nuclear fuel cladding during loss-of-coolant accident: a novel observation of failure at multiple locations vol.53, pp.2, 2020, https://doi.org/10.1016/j.net.2020.07.017
  3. Zy-4 LOCA cladding burst criteria computed by neural networks vol.385, 2021, https://doi.org/10.1016/j.nucengdes.2021.111538