References
- Breiman. L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classification and regression trees, Wadsworth Statistics/Probability Series, Wadsworth Advanced Books and Software.
- Caissie, D., Satish, M.G., and El-Jabi, N. (2007). Predicting water temperatures using a deterministic model: Application on Miramichi River catchment(New Brunswick, Canada), J. Hydrol., 336, 303-315. https://doi.org/10.1016/j.jhydrol.2007.01.008
- Chun, D.J. and Eun, J. (2017). Application method of remote sensing method for monitoring the water quality of big River, KEI Environmental Forum, 214, 21.
- Cho, J. Y. (2019). Odor compounds forecasting in Daecheong water intake station using machine learning models, Doctor's Thesis, Chungnam National University, Daejeon, Korea.
- Clercq, D.D., Wen, Z., and Fei, F. (2019). Determinants of efficiency in anaerobic bio-waste co-digestion facilities: A data envelopment analysis and gradient boosting approach, Appl. Energy, 253, 113570. https://doi.org/10.1016/j.apenergy.2019.113570
- Dhaliwal, S.S., Nahid, A.A., and Abbas, R. (2018). Effective intrusion detection system using XGboost, Information, 9(7), 149. https://doi.org/10.3390/info9070149
- Do, D.T. and Le, N.Q.K. (2020). Using extreme gradient boosting to identify origin of replication in Saccharomyces cerevisiae via hybrid features, Genomics. 112(3), 2445-2451. https://doi.org/10.1016/j.ygeno.2020.01.017
- Falconer, I.R. and Humpage, A.R. (2005). Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water, Int. J. Environ. Res. Public Health, 2(1), 43-50. https://doi.org/10.3390/ijerph2005010043
- Fan, J., Ma, X., Wu, L., Zang, F., Yu, X., and Zeng, W. (2019). Light gradient boosting machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological date, Agric. Water Manag., 225, 105758. https://doi.org/10.1016/j.agwat.2019.105758
- Friedman, J.H. (2002). Stochastic gradient boosting, Comput. Stat. Data Anal., 38(4), 367-378. https://doi.org/10.1016/S0167-9473(01)00065-2
- Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: date mining, inference and prediction, Springer Series in Statistics, New York, 745.
- Heo, J.S., Kwon, D,h., Kim, J,B., Han, Y.H., and An, C.H. (2018). Prediction of cryptocurrency price trend using gradient boosting, KIPS Trans, Softw. Data Eng., 7(10), 387-396. https://doi.org/10.3745/KTSDE.2018.7.10.387
- Hoerl, A.E. and Kennard, R.W. (1970). Ridge regression: Biased estimation for nonorthogonal problems, Technometrics, 12(1), 55-67. https://doi.org/10.1080/00401706.1970.10488634
- Hwang, S.J. (2012). Forecasting system for water quality using artificial neural Networks: The Kangjung-Koryung weir on the Nakdong River, Doctor's Thesis, Keimyung University.
- Hyndman, R.J. and Koehler, A.B. (2006). Another look at measure of forecast accuracy, Int. J. Forecast., 22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.03.001
- Johnson, N.E., Bonczak, B., and Kontokosta, C.E. (2018). Using a gradient boosting model to improve the performance of low-cost aerosol monitors in a dense, heterogeneous urban environment, Atmos. Environ., 184, 9-16. https://doi.org/10.1016/j.atmosenv.2018.04.019
- Johnson, N.E., Ianiuk, O., Cazap, D., Liu, L., Starobin, D., Dobler, G., and Ghandehari, M. (2017). Patterns of waste generation: A gradient boosting model for short-term waste prediction in New York City, J. Waste Manag., 62, 3-11. https://doi.org/10.1016/j.wasman.2017.01.037
- Jung, S.Y. and Kim, I.G. (2017). Analysis of water quality factor and correlation between water quality and Chl-a in middle and downstream weir section of Nakdong River, J. Korean Soc. Environ. Eng., 39(2), 89-96. https://doi.org/10.4491/KSEE.2017.39.2.89
- Jung, W.S., Kim, B,G., Kim, Y.D., and Kim, S.E. (2019). A study on the characteristics of cyanobacteria in the mainstream of Nakdong river using decision trees, J. Wetl. Res., 21(4), 312-320. https://doi.org/10.17663/JWR.2019.21.4.312
- Kim, C.W. and Seo, Y.G. (2020). Design and performance prediction of ultra-low flow hydrocyclone using the random forest method, J. Korean Soc. Manuf. Technol. Eng., 29(2), 83-88.
- Kim, D.H. and Yom, J.H. (2018). Machine Learning Based Estimation of Chlorophyll-a Concentrations in the Nakdong River Using Satellite Imagery, J. Korean Soc, Geom. atics., 4, 231-236.
- Kim, G.H., Jung, K.Y., Yoon, J.S., and Cheon, S.U. (2013). Temporal and spatial analysis of water quality data observed in lower watershed of Nam River Dam, J. Korean Soc. Hazard Mitig., 13(6), 429-437. https://doi.org/10.9798/KOSHAM.2013.13.6.429
- Kim, H.G. (2017). Prediction of chlorophyll-a in the middle reach of the Nakdong River at Maegok using artificial neural networks, Department of Integrated Biological Science, Master's Thesis, The Graduate School Busan National University, Busan, Korea.
- Krishna, T.H., Rajabhushanam, C., Michael, G., and Kavitha, R. (2019). Liver disorderprognosis with Apache spark random forest and gradient booster Algorithms, IJITEE, 8, 2278-3075.
- Landry, M., Erlinger, T.P., Patschke, D., and Varrichio, O. (2016). Probabilistic gradient boosting machines for Gefcom 2014 wind forecasting, Int. J. Forecast, 32(3), 1061-1066. https://doi.org/10.1016/j.ijforecast.2016.02.002
- Lawrence, R., Bunn, A., Powell, S., and Zambon, M. (2004). Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis, Remote Sens. Environ., 90(3), 331-336. https://doi.org/10.1016/j.rse.2004.01.007
- Lee, H.W. (2013). A study on nutrient mass balance of the weir sections in the middle of Nakdong River basin, Master's Thesis, Department of Environment Engineering Graduate School Yeungnam University, Gyeongsan, Gyeongbuk, Korea.
- Lee, J.A. and Yoo, J.E. (2019). Exploration of predictors to teacher efficacy via elastic net, Asian J. Education, 20(1), 149-172. https://doi.org/10.15753/aje.2019.03.20.1.149
- Lee, S.H., Kim, B.R., and Lee, H.W. (2014). A study on water quality after construction of the weirs in the middle area in Nakdong River, J. Korean Soc. Environ. Eng., 36(4), 258-264. https://doi.org/10.4491/KSEE.2014.36.4.258
- Lim, J.S., Kim, Y.W., Lee, J.H., Park, T.J., and Byun, I.G. (2015). Evaluation of Correlation between Chlorophyll-a and Multiple Parameters by Multiple Linear Regression Analysis, J. Korean Soc. Environ. Eng., 37(5), 253-261. https://doi.org/10.4491/KSEE.2015.37.5.253
- McLaughlin, D.B. (2012). Assessing the predictive performance of risk-based water quality criteria using decision error estimate from receiver operating characteristics(ROC) analysis, Integr. Environ. Asses., 8(4), 674-684. https://doi.org/10.1002/ieam.1301
- Metz, C.E. (1978). Basic principles of ROC analysis, Seminars in the Nuclear Medicine, 8(4), 283-298. https://doi.org/10.1016/S0001-2998(78)80014-2
- Morrison, A.M., Coughlin, K., Shin, J.P., Coull, B.A., and Rex, A.C. (2003). Receiver operating characteristic curve analysis of beach water quality indicator variables, Appl. Environ. Microb., 69(11), 6405-6411. https://doi.org/10.1128/AEM.69.11.6405-6411.2003
- Nieto, P.J.G., Gonzalo, E.G., Lasheras, F.S., Fernandez, J.J.R., Muniz, C.D., and Cos Jues, F.J. (2018). Cyanotoxin level prediction in a resevoir using gradient boosted regression trees: A case study, Environ. Sci. Pollut. R., 25, 22658-22671. https://doi.org/10.1007/s11356-018-2219-4
- Muller, A.C., and Guido, S. (2016). Introduction to Machine Learning with Python: A Guide for Data Scientists, O'Reilly Media, Inc.
- Park, B.G. (2015). A study for estimation of chlorophyll-a in a mid-lower reach of the Nakdong River using a neural network, Master's Thesis, Department of Civil Engineering, The Graduate School Pukyong Natioal University, Busan, Korea.
- Park, K.Y., and Ko. J.W. (2019). A short guide to machine learning for economists, Korean J. Econ., 26(2), 367-408. https://doi.org/10.46228/kje.26.2.9
- Persson, C., Bacher, P., Shiga, T., and Madsen, H. (2017). Multi-site solar power forecasting using gradient boosted regression trees, J. Sol. Energy, 150, 423-436. https://doi.org/10.1016/j.solener.2017.04.066
- Rokach, L., and Maimon, O. (2005). Decision Trees In Data Mining and Knowledge Discovery Handbook, Springer, Boston, MA.
- Song, S.S., Park, J.J., Kang, T.T., Kim, Y.S., Kim, J.Y., and Kang, T.K. (2017). Accuracy evaluation and alert level setting for real-time cyanobacteria measurement using receiver operating characteristic curve analysis, J. Korean Soc. Water Environ., 33(2), 130-139. https://doi.org/10.15681/KSWE.2017.33.2.130
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, Series B (Methodological), 58(1), 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
- Twisti, H., Edeards. A.C., and Codd, G.A. (1988). Algae growth respones to waters of contrasting tributaries of the river Dee, North-East Scotland, Water Res., 32(8), 2471-2479. https://doi.org/10.1016/S0043-1354(97)00450-8
- Vapnik, V. (1998). Statistical learning theory, Wiley-Interscience, New York.
- Wei, L., Huang, C., Wang, Z., Wang, Z., Zhou, X., and Cao, L. (2019). Monitoring of urban black-odor water based on Nemerow index and gradient boosting decision tree regression using UAV-borne hyperspectral imagery, Remote Sens., 11(20), 2402. https://doi.org/10.3390/rs11202402
- Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x
Cited by
- 지표 유출 특성을 고려한 홍수취약지역 지형학적 인자의 ROC 분석 vol.7, pp.4, 2020, https://doi.org/10.17820/eri.2020.7.4.327
- 딥러닝을 이용한 정삼투 막모듈의 플럭스 예측 vol.35, pp.1, 2020, https://doi.org/10.11001/jksww.2021.35.1.093
- Detecting Areas Vulnerable to Flooding Using Hydrological-Topographic Factors and Logistic Regression vol.11, pp.12, 2021, https://doi.org/10.3390/app11125652