DOI QR코드

DOI QR Code

이중 콘형 부분 예혼합 GT 노즐의 연료 분사구 형상 변화에 대한 연소특성

Combustion Characteristics of a Double-cone Partial Premixed Nozzle with Various Fuel hole Patterns

  • 투고 : 2020.07.09
  • 심사 : 2020.07.31
  • 발행 : 2020.08.31

초록

산업용 혹은 발전용 가스터빈에 사용되는 이중 콘형 예혼합 연소기의 연소 특성을 이해하기 위하여 실험적 연구를 수행하였다. 노즐의 여러 연료 분사 방식에 대하여 NOx와 CO의 배출 특성, 화염 안정성 및 연소실 온도 분포에 대한 연소특성을 비교하였다. 주 연구 결과로는 연료홀 개수가 동일하고 연료 홀 직경이 감소하는 경우와 연료 홀면적이 동일하고 연료 홀 수가 감소되는 경우 연료의 연소용 공기층 침투가 커지기 때문에 NOx의 배출은 감소하지만 화염 안정성은 감소하게 된다. 그리고 동일 연료 홀 면적을 이용하는 분사방식에 있어서 연료 홀을 교차 변경하는 경우 연료의 평균 침투거리 증가로 NOx의 배출이 감소되며 연료 침투거리가 적은 연료가 화염을 안정화시키는 역할을 한다.

Experimental investigations were conducted to examine the combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Several variants with different fuel injection patterns are tested to compare the combustion characteristics such as NOx and CO emissions, stability, and wall temperature distributions. Main results show that NOx emissions and stability are decreased either when the fuel hole diameter is decreased with the same number of fuel holes, or when the number of fuel holes is reduced with the same total area of fuel holes, both of which are due to a higher penetration of fuel into the air stream. Not only is NOx reduced but also stability is enhanced when the fuel hole diameter varies in an alternating manner with the same total area of fuel holes, showing that NOx reduction is due to a higher penetration of mean fuel injection path while stability enhancement is due to a lowered penetration of minimum fuel injection path.

키워드

참고문헌

  1. Kim, H. S., Cho, J. H., Kim, M. K., Hwang, J. J.M and LEE, W. J., "Characteristics of Multi staged combustion on a Double-cone Partial Premixed Nozzles", KIGAS, 24(1), 49-55, (2020)
  2. Lefebvre, A. H., Gas Turbine Combustion., McGraw-Hill, (1983)
  3. Mellor, A. M., Design of Modern Turbine Combustor., Academic Press, (1990).
  4. Cohen, H., Rogers, G. F. C., Saravanamutto, H. I. H., Gas Turbine Theory(3th), Longman Scientific & Technical, (1987)
  5. Fenimore, C. P., "Studies of fuel-nitrogen in rich flame gases.", 17th Proc. Combust. Institute, 661-670, (1979)
  6. Feitelbery, A. S., Lacey, M. A., "The GE Rich-Quench-Lean Gas Turbine Combustor", ASME, 97-GT-127, (1997)
  7. Peter, G., "Experimental Investigation of an Atmospheric Rectangular Rich Quench Lean Combustor Sector for Aeroengines", ASME, 97-GT-146, (1997)
  8. Northern Research and Engineering Corporation, The Design and Development of Gas Turbine Combustors, Northern Research and Engineering Corporation, Woburn, Massachusetts, U.S.A., (1980)
  9. Kim, H. S., Lim, A. H., Ahn, K. Y., "Study on the combustion characteristics of a lean premixed combustor." Journal of Korean Society of Combustion, 9(1), 25-31, (2004)
  10. Kim, H. S., Arghode, V. K., and Gupta, A. K., "Combustion characteristics of a lean premixed LPG-air combustor", I. J. Hydrogen Energy, 34(2), 1045-1053, (2009) https://doi.org/10.1016/j.ijhydene.2008.10.036
  11. Cho, C. H., Baek, G. M., Sohn, C. H., Cho, J. H., Kim, H. S., "A numerical approach to reduction of NOx emission from swirl premix burner in a gas turbine combustor", Applied Thermal Engineering, 59(1-2), 454-463, (2013) https://doi.org/10.1016/j.applthermaleng.2013.06.004
  12. Fernando, B., Felix, G., "Combustion dynamics linked to flame behaviour in a partially premixed swirled industrial burner", Experimental Thermal and Fluid Science, 32(7), 1344-1353, (2008) https://doi.org/10.1016/j.expthermflusci.2007.11.007
  13. Fernando, B., Felix, G., "Effect of pressure and fuel-air unmixedness on NOx emissions from industrial gas turbine burners", Combustion and Flame, 151(1-2), 274-288, (2007). https://doi.org/10.1016/j.combustflame.2007.04.007
  14. Kim, H. S., Arghode, V. K., and Gupta, A. K., "Hydrogen addition effects in a confined swirlstabilized methane-air flame", I. J. Hydrogen Energy, 34(2), 1054-1062, (2009). https://doi.org/10.1016/j.ijhydene.2008.10.034
  15. Kim, H. S., Arghode, V. K., and Gupta, A. K., "Flame characteristics of hydrogen-enriched methane-air premixed swirling flames", I. J. Hydrogen Energy, 34(2), 1063-1073, (2009). https://doi.org/10.1016/j.ijhydene.2008.10.035