DOI QR코드

DOI QR Code

Genetic classification and confirmation of inherited platelet disorders: current status in Korea

  • Shim, Ye Jee (Department of Pediatrics, Keimyung University School of Medicine, Keimyung University Dongsan Medical Center)
  • Received : 2019.01.12
  • Accepted : 2019.08.21
  • Published : 2020.03.15

Abstract

Inherited platelet disorders (IPDs), which manifest as primary hemostasis defects, often underlie abnormal bleeding and a family history of thrombocytopenia, bone marrow failure, hematologic malignancies, undefined mucocutaneous bleeding disorder, or congenital bony defects. Wide heterogeneity in IPD types with regard to the presence or absence of thrombocytopenia, platelet dysfunction, bone marrow failure, and dysmegakaryopoiesis is observed in patients. The individual processes involved in platelet production and hemostasis are genetically controlled; to date, mutations of more than 50 genes involved in various platelet biogenesis steps have been implicated in IPDs. Representative IPDs resulting from defects in specific pathways, such as thrombopoietin/MPL signaling; transcriptional regulation; granule formation, trafficking, and secretion; proplatelet formation; cytoskeleton regulation; and transmembrane glycoprotein signaling are reviewed, and the underlying gene mutations are discussed based on the National Center for Biotechnology Information database and Online Mendelian Inheritance in Man accession number. Further, the status and prevalence of genetically confirmed IPDs in Korea are explored based on searches of the PubMed and KoreaMed databases. IPDs are congenital bleeding disorders that can be dangerous due to unexpected bleeding and require genetic counseling for family members and descendants. Therefore, the pediatrician should be suspicious and aware of IPDs and perform the appropriate tests if the patient has unexpected bleeding. However, all IPDs are extremely rare; thus, the domestic incidences of IPDs are unclear and their diagnosis is difficult. Diagnostic confirmation or differential diagnoses of IPDs are challenging, time-consuming, and expensive, and patients are frequently misdiagnosed. Comprehensive molecular characterization and classification of these disorders should enable accurate and precise diagnosis and facilitate improved patient management.

Keywords

References

  1. Gale AJ. Continuing education course #2: current understanding of hemostasis. Toxicol Pathol 2011;39:273-80. https://doi.org/10.1177/0192623310389474
  2. Bolton-Maggs PH, Chalmers EA, Collins PW, Harrison P, Kitchen S, Liesner RJ, et al. A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO. Br J Haematol 2006;135:603-33. https://doi.org/10.1111/j.1365-2141.2006.06343.x
  3. Nurden AT, Freson K, Seligsohn U. Inherited platelet disorders. Haemophilia 2012;18 Suppl 4:154-60. https://doi.org/10.1111/j.1365-2516.2012.02856.x
  4. Lambert MP. What to do when you suspect an inherited platelet disorder. Hematology Am Soc Hematol Educ Program 2011;2011:377-83. https://doi.org/10.1182/asheducation-2011.1.377
  5. Gresele P, Harrison P, Bury L, Falcinelli E, Gachet C, Hayward CP, et al. Diagnosis of suspected inherited platelet function disorders: results of a worldwide survey. J Thromb Haemost 2014;12:1562-9. https://doi.org/10.1111/jth.12650
  6. D'Andrea G, Chetta M, Margaglione M. Inherited platelet disorders: thrombocytopenias and thrombocytopathies. Blood Transfus 2009;7:278-92.
  7. Lentaigne C, Freson K, Laffan MA, Turro E, Ouwehand WH; BRIDGEBPD Consortium and the ThromboGenomics Consortium. Inherited platelet disorders: toward DNA-based diagnosis. Blood 2016;127:2814-23. https://doi.org/10.1182/blood-2016-03-378588
  8. Israels SJ, El-Ekiaby M, Quiroga T, Mezzano D. Inherited disorders of platelet function and challenges to diagnosis of mucocutaneous bleeding. Haemophilia 2010;16 Suppl 5:152-9. https://doi.org/10.1111/j.1365-2516.2010.02314.x
  9. Ballmaier M, Germeshausen M, Schulze H, Cherkaoui K, Lang S, Gaudig A, et al. c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 2001;97:139-46. https://doi.org/10.1182/blood.V97.1.139
  10. Chung HS, Koh KN, Kim HJ, Kim HJ, Lee KO, Park CJ, et al. A novel nonsense mutation in the MPL gene in congenital amegakaryocytic thrombocytopenia. Pediatr Blood Cancer 2011;56:304-6. https://doi.org/10.1002/pbc.22842
  11. Al-Qahtani FS. Congenital amegakaryocytic thrombocytopenia: a brief review of the literature. Clin Med Insights Pathol 2010;3:25-30.
  12. Al-Ahmari A, Ayas M, Al-Jefri A, Al-Mahr M, Rifai S, El-Solh H. Allogeneic stem cell transplantation for patients with congenital amegakaryocytic thrombocytopenia (CAT). Bone Marrow Transplant 2004;33:829-31. https://doi.org/10.1038/sj.bmt.1704445
  13. Freson K, Devriendt K, Matthijs G, Van Hoof A, De Vos R, Thys C, et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood 2001;98:85-92. https://doi.org/10.1182/blood.V98.1.85
  14. Mehaffey MG, Newton AL, Gandhi MJ, Crossley M, Drachman JG. X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood 2001;98:2681-8. https://doi.org/10.1182/blood.V98.9.2681
  15. Nichols KE, Crispino JD, Poncz M, White JG, Orkin SH, Maris JM, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet 2000;24:266-70. https://doi.org/10.1038/73480
  16. Yu C, Niakan KK, Matsushita M, Stamatoyannopoulos G, Orkin SH, Raskind WH. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood 2002;100:2040-5. https://doi.org/10.1182/blood-2002-02-0387
  17. Favier R, Jondeau K, Boutard P, Grossfeld P, Reinert P, Jones C, et al. Paris-Trousseau syndrome: clinical, hematological, molecular data of ten new cases. Thromb Haemost 2003;90:893-7. https://doi.org/10.1160/TH03-02-0120
  18. Grossfeld PD, Mattina T, Lai Z, Favier R, Jones KL, Cotter F, et al. The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A 2004;129A:51-61. https://doi.org/10.1002/ajmg.a.30090
  19. Noh JH, Park IS, Lee HK, Kim YC. A case of Jacobsen syndrome. J Korean Soc Neonatol 2002;9:211-4.
  20. Shin J, Kim G, Lee R, Jung N, Shim YJ, Ha JS. A case of Jacobsen syndrome presenting with a huge cephalhematoma and thrombocytopenia after birth. Clin Pediatr Hematol Oncol 2018;25:50-60. https://doi.org/10.15264/cpho.2018.25.1.50
  21. Yoon JH, Kim SR, Lee WI, Do IG, Lee BY, Lee SK, et al. A case of prenatally diagnosed Jacobsen syndrome. Korean J Obstet Gynecol 2005 48:1358-61.
  22. Krishnamurti L, Neglia JP, Nagarajan R, Berry SA, Lohr J, Hirsch B, et al. Paris-Trousseau syndrome platelets in a child with Jacobsen's syndrome. Am J Hematol 2001;66:295-9. https://doi.org/10.1002/ajh.1061
  23. Raslova H, Komura E, Le Couedic JP, Larbret F, Debili N, Feunteun J, et al. FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Invest 2004;114:77-84. https://doi.org/10.1172/JCI21197
  24. Thompson AA, Nguyen LT. Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nat Genet 2000;26:397-8. https://doi.org/10.1038/82511
  25. Niihori T, Ouchi-Uchiyama M, Sasahara Y, Kaneko T, Hashii Y, Irie M, et al. Mutations in MECOM, encoding oncoprotein EVI1, cause radioulnar synostosis with amegakaryocytic thrombocytopenia. Am J Hum Genet 2015;97:848-54. https://doi.org/10.1016/j.ajhg.2015.10.010
  26. Kataoka K, Kurokawa M. Ecotropic viral integration site 1, stem cell selfrenewal and leukemogenesis. Cancer Sci 2012;103:1371-7. https://doi.org/10.1111/j.1349-7006.2012.02303.x
  27. Perkins AS, Mercer JA, Jenkins NA, Copeland NG. Patterns of Evi-1 expression in embryonic and adult tissues suggest that Evi-1 plays an important regulatory role in mouse development. Development 1991;111:479-87. https://doi.org/10.1242/dev.111.2.479
  28. Greenhalgh KL, Howell RT, Bottani A, Ancliff PJ, Brunner HG, Verschuuren-Bemelmans CC, et al. Thrombocytopenia-absent radius syndrome: a clinical genetic study. J Med Genet 2002;39:876-81. https://doi.org/10.1136/jmg.39.12.876
  29. Kim YH, Yang JS, Lee YJ, Bae MH, Park KH, Lee DH, et al. 1q21.1 microdeletion identified by chromosomal microarray in a newborn with upper airway obstruction. J Genet Med 2018;15:34-7. https://doi.org/10.5734/JGM.2018.15.1.34
  30. We JS, Park IY, Kim MS, Shin JC. Prenatal diagnosis of thrombocytopeniaabsent radius syndrome using three-dimensional ultrasound. Korean J Obstet Gynecol 2008;51:665-9.
  31. Albers CA, Paul DS, Schulze H, Freson K, Stephens JC, Smethurst PA, et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet 2012;44:435-9, S1-2. https://doi.org/10.1038/ng.1083
  32. Gunay-Aygun M, Huizing M, Gahl WA. Molecular defects that affect platelet dense granules. Semin Thromb Hemost 2004;30:537-47. https://doi.org/10.1055/s-2004-835674
  33. Chiang PW, Oiso N, Gautam R, Suzuki T, Swank RT, Spritz RA. The Hermansky-Pudlak syndrome 1 (HPS1) and HPS4 proteins are components of two complexes, BLOC-3 and BLOC-4, involved in the biogenesis of lysosome-related organelles. J Biol Chem 2003;278:20332-7. https://doi.org/10.1074/jbc.M300090200
  34. Witkop CJ, Nunez Babcock M, Rao GH, Gaudier F, Summers CG, Shanahan F, et al. Albinism and Hermansky-Pudlak syndrome in Puerto Rico. Bol Asoc Med P R 1990;82:333-9.
  35. Kaplan J, De Domenico I, Ward DM. Chediak-Higashi syndrome. Curr Opin Hematol 2008;15:22-9. https://doi.org/10.1097/MOH.0b013e3282f2bcce
  36. Ward DM, Shiflett SL, Kaplan J. Chediak-Higashi syndrome: a clinical and molecular view of a rare lysosomal storage disorder. Curr Mol Med 2002;2:469-77. https://doi.org/10.2174/1566524023362339
  37. Park GS, Lee DW, Song MY, Kim HK, Han KJ, Cho BK. Chediak-Higashi syndrome with hyperpigmentation. Ann Dermatol 1996;8:140-3. https://doi.org/10.5021/ad.1996.8.2.140
  38. Seri M, Cusano R, Gangarossa S, Caridi G, Bordo D, Lo Nigro C, et al. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium. Nat Genet 2000;26:103-5. https://doi.org/10.1038/79063
  39. Pecci A, Noris P, Invernizzi R, Savoia A, Seri M, Ghiggeri GM, et al. Immunocytochemistry for the heavy chain of the non-muscle myosin IIA as a diagnostic tool for MYH9-related disorders. Br J Haematol 2002;117:164-7. https://doi.org/10.1046/j.1365-2141.2002.03385.x
  40. Heath KE, Campos-Barros A, Toren A, Rozenfeld-Granot G, Carlsson LE, Savige J, et al. Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am J Hum Genet 2001;69:1033-45. https://doi.org/10.1086/324267
  41. Saito H, Kunishima S. Historical hematology: May-Hegglin anomaly. Am J Hematol 2008;83:304-6. https://doi.org/10.1002/ajh.21102
  42. Seri M, Pecci A, Di Bari F, Cusano R, Savino M, Panza E, et al. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore) 2003;82:203-15. https://doi.org/10.1097/01.md.0000076006.64510.5c
  43. Han KH, Lee H, Kang HG, Moon KC, Lee JH, Park YS, et al. Renal manifestations of patients with MYH9-related disorders. Pediatr Nephrol 2011;26:549-55. https://doi.org/10.1007/s00467-010-1735-3
  44. Jang MJ, Park HJ, Chong SY, Huh JY, Kim IH, Jang JH, et al. A Trp33Arg mutation at exon 1 of the MYH9 gene in a Korean patient with May- Hegglin anomaly. Yonsei Med J 2012;53:662-6. https://doi.org/10.3349/ymj.2012.53.3.662
  45. Kook H, Nam HS, Baek HJ, Kim YO, Eom GH, Kee HJ, et al. Clinical characteristics of autosomal dominant giant platelet syndromes and mutation analysis of MYH9. Korean J Hematol 2006;41:16-27. https://doi.org/10.5045/kjh.2006.41.1.16
  46. Lee NH, Kim ES, Sung SI, Ahn SY, Lee MS, Han YM, et al. May-Hegglin anomaly diagnosed by genetic study in a newborn infant Korean J Perinatol 2012;23:108-12.
  47. Oh T, Jung Seo H, Taek Lee K, Jo Kim H, Jun Kim H, Lee JH, et al. MYH9 nephropathy. Kidney Res Clin Pract 2015;34:53-6. https://doi.org/10.1016/j.krcp.2014.09.003
  48. Park SJ, Wy H, Jung HL, Shim JW, Shim JY, Kim DS, et al. A case of myosin-heavy-chain-9 (MYH9) gene mutation confirmed May-Hegglin anomaly: 11-year Follow-up. Clin Pediatr Hematol Oncol 2016;23:167-70. https://doi.org/10.15264/cpho.2016.23.2.167
  49. Rhim JW, Kim KH, Kim DS, Kim BS, Kim JS, Kim CH, et al. Prevalence of primary immunodeficiency in Korea. J Korean Med Sci 2012;27:788-93. https://doi.org/10.3346/jkms.2012.27.7.788
  50. Sabri S, Foudi A, Boukour S, Franc B, Charrier S, Jandrot-Perrus M, et al. Deficiency in the Wiskott-Aldrich protein induces premature proplatelet formation and platelet production in the bone marrow compartment. Blood 2006;108:134-40.
  51. Zhu Q, Zhang M, Blaese RM, Derry JM, Junker A, Francke U, et al. The Wiskott-Aldrich syndrome and X-linked congenital thrombocytopenia are caused by mutations of the same gene. Blood 1995;86:3797-804.. https://doi.org/10.1182/blood.v86.10.3797.bloodjournal86103797
  52. Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr 1994;125(6 Pt 1):876-85. https://doi.org/10.1016/S0022-3476(05)82002-5
  53. Jo EK, Futatani T, Kanegane H, Kubota T, Lee YH, Jung JA, et al. Mutational analysis of the WASP gene in 2 Korean families with Wiskott-Aldrich syndrome. Int J Hematol 2003;78:40-4. https://doi.org/10.1007/BF02983238
  54. Kang HJ, Shin HY, Ko SH, Park JA, Kim EK, Rhim JW, et al. Unrelated bone marrow transplantation with a reduced toxicity myeloablative conditioning regimen in Wiskott-Aldrich syndrome. J Korean Med Sci 2008;23:146-8. https://doi.org/10.3346/jkms.2008.23.1.146
  55. Kim HJ, Yoo EH, Ki CS, Yoo GH, Koo HH, Kim JW, et al. A novel mutation W252X in the WAS gene in a Korean patient with Wiskott-Aldrich syndrome. Int J Hematol 2006;83:426-8. https://doi.org/10.1532/IJH97.A30513
  56. Kim MK, Kim ES, Kim DS, Choi IH, Moon T, Yoon CN, et al. Two novel mutations of Wiskott-Aldrich syndrome: the molecular prediction of interaction between the mutated WASP L101P with WASP-interacting protein by molecular modeling. Biochim Biophys Acta 2004;1690:134-40. https://doi.org/10.1016/j.bbadis.2004.06.007
  57. Lee EK, Eem YJ, Chung NG, Kim MS, Jeong DC. A case of familial X linked thrombocytopenia with a novel WAS gene mutation. Korean J Pediatr 2013;56:265-8. https://doi.org/10.3345/kjp.2013.56.6.265
  58. Lee YH, Lim YJ, Shin SA, Song CH, Jo EK, Jung JA, et al. Phenotypic and genotypic correction of WASP gene mutation in Wiskott-Aldrich syndrome by unrelated cord blood stem cell transplantation. J Korean Med Sci 2009;24:751-4. https://doi.org/10.3346/jkms.2009.24.4.751
  59. Park SK, Kim CS, Song DK, Kim JY, Choi IJ, Kim DK. A familial case of Wiskott-Aldrich Syndrome with a hotspot mutation in exon 2 of the WAS Gene. J Korean Med Sci 2007;22:998-1001. https://doi.org/10.3346/jkms.2007.22.6.998
  60. Yoon SH, Cho T, Kim HJ, Kim SY, Ko JH, Baek HS, et al. IVS6+5G>A found in Wiskott-Aldrich syndrome and X-linked thrombocytopenia in a Korean family. Pediatr Blood Cancer 2012;58:297-9. https://doi.org/10.1002/pbc.23377
  61. Yi ES, Choi YB, Lee NH, Lee JW, Sung KW, Koo HH, et al. Allogeneic hematopoietic cell transplantation in patients with primary immunodeficiencies in Korea: eleven-year experience in a single center. J Clin Immunol 2018;38:757-66. https://doi.org/10.1007/s10875-018-0542-7
  62. Afrasiabi A, Artoni A, Karimi M, Peyvandi F, Ashouri E, Mannucci PM. Glanzmann thrombasthenia and Bernard-Soulier syndrome in south Iran. Clin Lab Haematol 2005;27:324-7. https://doi.org/10.1111/j.1365-2257.2005.00725.x
  63. Nurden AT, Fiore M, Nurden P, Pillois X. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 2011;118:5996-6005. https://doi.org/10.1182/blood-2011-07-365635
  64. Fang J, Nurden P, North P, Nurden AT, Du LM, Valentin N, et al. $C560R{\beta}3$ caused platelet integrin ${\alpha}II$ b ${\beta}3$ to bind fibrinogen continuously, but resulted in a severe bleeding syndrome and increased murine mortality. J Thromb Haemost 2013;11:1163-71. https://doi.org/10.1111/jth.12209
  65. Park KJ, Chung HS, Lee KO, Park IA, Kim SH, Kim HJ. Novel and recurrent mutations of ITGA2B and ITGB3 genes in Korean patients with Glanzmann thrombasthenia. Pediatr Blood Cancer 2012;59:335-8. https://doi.org/10.1002/pbc.24041
  66. George JN, Caen JP, Nurden AT. Glanzmann's thrombasthenia: the spectrum of clinical disease. Blood 1990;75:1383-95. https://doi.org/10.1182/blood.v75.7.1383.bloodjournal7571383
  67. Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 1996;88:907-14. https://doi.org/10.1182/blood.v88.3.907.907
  68. Savoia A, Kunishima S, De Rocco D, Zieger B, Rand ML, Pujol-Moix N,et al. Spectrum of the mutations in Bernard-Soulier syndrome. Hum Mutat 2014;35:1033-45. https://doi.org/10.1002/humu.22607
  69. Lopez JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard-Soulier syndrome. Blood 1998;91:4397-418. https://doi.org/10.1182/blood.v91.12.4397.412k42_4397_4418
  70. Poujol C, Ware J, Nieswandt B, Nurden AT, Nurden P. Absence of GPIbalpha is responsible for aberrant membrane development during megakaryocyte maturation: ultrastructural study using a transgenic model. Exp Hematol 2002;30:352-60. https://doi.org/10.1016/S0301-472X(02)00774-9
  71. Berndt MC, Shen Y, Dopheide SM, Gardiner EE, Andrews RK. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb Haemost 2001;86:178-88. https://doi.org/10.1055/s-0037-1616216
  72. Pham A, Wang J. Bernard-Soulier syndrome: an inherited platelet disorder. Arch Pathol Lab Med 2007;131:1834-6. https://doi.org/10.5858/2007-131-1834-BSAIPD
  73. Miller JL, Cunningham D, Lyle VA, Finch CN. Mutation in the gene encoding the alpha chain of platelet glycoprotein Ib in platelet-type von Willebrand disease. Proc Natl Acad Sci U S A 1991;88:4761-5. https://doi.org/10.1073/pnas.88.11.4761
  74. Russell SD, Roth GJ. Pseudo-von Willebrand disease: a mutation in the platelet glycoprotein Ib alpha gene associated with a hyperactive surface receptor. Blood 1993;81:1787-91. https://doi.org/10.1182/blood.v81.7.1787.1787
  75. Randi AM, Rabinowitz I, Mancuso DJ, Mannucci PM, Sadler JE. Molecular basis of von Willebrand disease type IIB. Candidate mutations cluster in one disulfide loop between proposed platelet glycoprotein Ib binding sequences. J Clin Invest 1991;87:1220-6. https://doi.org/10.1172/JCI115122
  76. Budarf ML, Konkle BA, Ludlow LB, Michaud D, Li M, Yamashiro DJ, et al. Identification of a patient with Bernard-Soulier syndrome and a deletion in the DiGeorge/velo-cardio-facial chromosomal region in 22q11.2. Hum Mol Genet 1995;4:763-6. https://doi.org/10.1093/hmg/4.4.763
  77. Burnside RD. 22q11.21 Deletion syndromes: a review of proximal, central, and distal deletions and their associated features. Cytogenet Genome Res 2015;146:89-99. https://doi.org/10.1159/000438708
  78. Nakagawa M, Okuno M, Okamoto N, Fujino H, Kato H. Bernard-Soulier syndrome associated with 22q11.2 microdeletion. Am J Med Genet 2001;99:286-8. https://doi.org/10.1002/1096-8628(2001)9999:9999<::AID-AJMG1176>3.0.CO;2-T
  79. Johnson B, Doak R, Allsup D, Astwood E, Evans G, Grimley C, et al. A comprehensive targeted next-generation sequencing panel for genetic diagnosis of patients with suspected inherited thrombocytopenia. Res Pract Thromb Haemost 2018;2:640-52. https://doi.org/10.1002/rth2.12151
  80. Sanchez-Guiu I, Anton AI, Padilla J, Velasco F, Lucia JF, Lozano M, et al. Functional and molecular characterization of inherited platelet disorders in the Iberian Peninsula: results from a collaborative study. Orphanet J Rare Dis 2014;9:213. https://doi.org/10.1186/s13023-014-0213-6
  81. Schlemper RJ, van der Maas AP, Eikenboom JC. Familial essential thrombocythemia: clinical characteristics of 11 cases in one family. Ann Hematol 1994;68:153-8. https://doi.org/10.1007/BF01727421
  82. Ding J, Komatsu H, Wakita A, Kato-Uranishi M, Ito M, Satoh A, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 2004;103:4198-200. https://doi.org/10.1182/blood-2003-10-3471
  83. Paterson AD, Rommens JM, Bharaj B, Blavignac J, Wong I, Diamandis M, et al. Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene. Blood 2010;115:1264-6. https://doi.org/10.1182/blood-2009-07-233965
  84. Kahr WH, Hinckley J, Li L, Schwertz H, Christensen H, Rowley JW, et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat Genet 2011;43:738-40. https://doi.org/10.1038/ng.884
  85. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 2001;409:202-7. https://doi.org/10.1038/35051599
  86. Hirata T, Kakizuka A, Ushikubi F, Fuse I, Okuma M, Narumiya S. Arg60 to Leu mutation of the human thromboxane A2 receptor in a dominantly inherited bleeding disorder. J Clin Invest 1994;94:1662-7. https://doi.org/10.1172/JCI11751
  87. Mestel F, Oetliker O, Beck E, Felix R, Imbach P, Wagner HP. Severe bleeding associated with defective thromboxane synthetase. Lancet 1980;1:157. https://doi.org/10.1016/S0140-6736(02)95617-5
  88. Genevieve D, Proulle V, Isidor B, Bellais S, Serre V, Djouadi F, et al. Thromboxane synthase mutations in an increased bone density disorder (Ghosal syndrome). Nat Genet 2008;40:284-6. https://doi.org/10.1038/ng.2007.66
  89. Suzuki J, Umeda M, Sims PJ, Nagata S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 2010;468:834-8. https://doi.org/10.1038/nature09583
  90. Hwang DJ, Yang JW, Kim SY, Yi HK, Lee DY, Hwang PH. Diagnostic approach of Wiskott-Aldrich syndrome. Korean J Pediatr 2004;47:726-34.
  91. Baek HJ, Choi SH, Sohn KR, Kook H, Kim SJ, Song ES, et al. Mutaion analysis in X-linked recessive congenital immunodeficiency syndromes. Chonnam Med J 2005;41:48-61.

Cited by

  1. When to suspect inherited platelet disorders and how to diagnose them vol.63, pp.3, 2020, https://doi.org/10.3345/cep.2019.01207
  2. Current Knowledge on Inherited Platelet Function Disorders vol.27, pp.1, 2020, https://doi.org/10.15264/cpho.2020.27.1.1
  3. Genetic Confirmation and Identification of Novel Variants for Glanzmann Thrombasthenia and Other Inherited Platelet Function Disorders: A Study by the Korean Pediatric Hematology Oncology Group (KPHOG vol.12, pp.5, 2020, https://doi.org/10.3390/genes12050693