DOI QR코드

DOI QR Code

Real-Time GPU Technique for Extracting Mesh Isosurfaces from BCC Volume Datasets

BCC 볼륨 데이터로부터 실시간으로 메시 형태의 등가면을 추출하는 GPU 기법

  • Kim, Hyunjun (Dept. of Computer Science and Engineering, University of Seoul) ;
  • Kim, Minho (Dept. of Computer Science and Engineering, University of Seoul)
  • 김현준 (서울시립대학교 컴퓨터과학과) ;
  • 김민호 (서울시립대학교 컴퓨터과학과)
  • Received : 2020.05.13
  • Accepted : 2020.08.14
  • Published : 2020.09.01

Abstract

We present a real-time GPU(Graphic Processing Unit) marching tetrahedra technique that extracts isosurfaces in the indexed mesh format from BCC(Body Centered Cubic) volume datasets. Compared to classical marching tetrahedra, our method shows better performance with little memory overhead. Our technique is composed of five stages. In the first stage, which needs to be done only once, we build min/max blocks that is to be used for empty space skipping to boost the performance. Next, we extract active blocks that contain the current isovalue. In the next two stages, we extract the edges and cells that contain the isosurface and then the final triangular mesh is generated in the last stage. When applied 5123 or higher resolution volume dataset, our technique shows up to 5 times speed improvement compared to the classical marching tetrahedra algorithm.

본 논문에서는 GPU(Graphic Processing Unit) 연산을 활용하여 BCC(Body Centered Cubic) 볼륨 데이터로부터 실시간으로 메시 형태의 등가면을 추출하는 개선된 마칭 사면체(Marching tetrahedra) 기법을 제안한다. 본 기법은 고전적인 방법과 비교하여 메모리 사용량은 다소 높지만 더 좋은 성능을 보인다. 본 기법은 다섯 단계로 구성되어 있다. 첫 번째 단계는 단 한번만 수행되는 단계로, 빈 공간을 생략하여 성능을 향상 시키기 위해 최소/최댓값 블록(Min/max block)을 생성한다. 두 번째 단계에서는 등갓값(Isovalue)을 포함하고 있는 유효한 블록을 추려낸다. 이후 두 단계에서는 등가면(Isosurface)을 포함하는 셀(Cell)과 엣지(Edge)를 추출하고, 마지막 단계에서 삼각형 메시(Triangle mesh)를 생성한다. 본 기법은 5123 이상의 고해상도 볼륨 데이터(Volume dataset)에 대한 등가면 추출 시, 삼각형 집합 형태의 등가면을 추출하는 고전적인 마칭 사면체 기법에 비해 최대 5배 정도의 속도 향상을 보인다.

Keywords

Acknowledgement

이 논문은 2018년도 서울시립대학교 교내학술연구비에 의하여 지원되었음.

References

  1. D. P. Petersen and D. Middleton, "Sampling and reconstruction of wave-number-limited functions in Ndimensional euclidean spaces," Information and Control, vol. 5, no. 4, pp. 279-323, dec 1962. https://doi.org/10.1016/S0019-9958(62)90633-2
  2. W. Griffin, Y. Wang, D. Berrios, and M. Olano, "Realtime GPU surface curvature estimation on deforming meshes and volumetric data sets," IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 10, pp. 1603-1613, 2012. https://doi.org/10.1109/TVCG.2012.113
  3. J. Wilhelms and A. Van Gelder, "Octrees for faster isosurface generation," ACM Trans. Graph., vol. 11, no. 3, p. 201-227, Jul. 1992. https://doi.org/10.1145/130881.130882
  4. J. Chen, X. Jin, and Z. Deng, "GPU-based polygonization and optimization for implicit surfaces," The Visual Computer, vol. 31, no. 2, pp. 119-130, feb 2015. https://doi.org/10.1007/s00371-014-0924-7
  5. H. Kim, D. Kim, and M. Kim, "Mesh-based Marching Cubes on the GPU," Journal of the Korea Computer Graphics Society, vol. 24, no. 1, pp. 1-8, mar 2018.
  6. A. Doi and A. Koide, "An efficient method of triangulating equi-valued surfaces by using tetrahedral cells," IEICE TRANSACTIONS on Information and Systems, vol. E74-D, no. 1, pp. 214-224, Jan. 1991.
  7. A. Gueziec and R. Hummel, "Exploiting triangulated surface extraction using tetrahedral decomposition," IEEE Transactions on Visualization and Computer Graphics, vol. 1, no. 4, pp. 328-342, 1995.
  8. S. L. Chan and E. O. Purisima, "A new tetrahedral tesselation scheme for isosurface generation," Computers & Graphics, vol. 22, no. 1, pp. 83-90, feb 1998. https://doi.org/10.1016/S0097-8493(97)00085-X
  9. H. Carr, T. Theussl, and T. Moller, "Isosurfaces on Optimal Regular Samples," in Eurographics / IEEE VGTC Symposium on Visualization, 2003, pp. 39-49.
  10. N. Tatarchuk, J. Shopf, and C. DeCoro, "Real-Time Isosurface Extraction Using the GPU Programmable Geometry Pipeline," in ACM SIGGRAPH 2007 courses on - SIGGRAPH '07. New York, New York, USA: ACM Press, 2007, p. 122.
  11. D. Kim, H. Kim, and M. Kim, "Mesh-Based Marching Tetrahedra on BCC Datasets," in KCGS Conference, 2017, pp. 41-42.
  12. B. Liu, G. J. Clapworthy, F. Dong, and E. Wu, "Parallel Marching Blocks: A Practical Isosurfacing Algorithm for Large Data on Many-Core Architectures," Computer Graphics Forum, vol. 35, no. 3, pp. 211-220, jun 2016. https://doi.org/10.1111/cgf.12897
  13. H. Coxeter, Regular Polytopes, ser. Dover books on advanced mathematics. Dover Publications, 1973.
  14. M. Harris, S. Sengupta, and J. D. Owens, "Parallel prefix sum (scan) with cuda," in GPU Gems, Apr. 2007, pp. 851-876.
  15. P. Shirley and A. Tuchman, "A polygonal approximation to direct scalar volume rendering," in Proceedings of the 1990 workshop on Volume visualization - VVS '90. New York, New York, USA: ACM Press, 1990, pp. 63-70.
  16. V. Pascucci, "Isosurface Computation Made Simple: Hardware Acceleration, Adaptive Refinement and Tetrahedral Stripping," Proceedings of the Joint EG/IEEE VGTC Symposium on Visualization, pp. 293-300, 2004.
  17. G. M. Treece, R. W. Prager, and A. H. Gee, "Regularised marching tetrahedra: improved iso-surface extraction," Computers & Graphics, vol. 23, no. 4, pp. 583-598, aug 1999. https://doi.org/10.1016/S0097-8493(99)00076-X
  18. J. Wilhelms and A. Van Gelder, "Topological considerations in isosurface generation extended abstract," SIGGRAPH Comput. Graph., vol. 24, no. 5, p. 79-86, Nov. 1990.