Acknowledgement
The authors are profoundly grateful to the eSCIENCE grant (SF16-001-0070) provided by the Ministry of Science, Technology, and Innovation (MOSTI), 62000 Putrajaya, Malaysia.
References
- Aguilar, Z.P. (2012), Nanomaterials for Medical Applications, Elsevier, Waltham, U.S.A.
- Albertsson, A.C. and Eklund, M. (1994), "Synthesis of copolymers of 1, 3-dioxan-2-one and oxepan-2-one using coordination catalysts", J. Polym. Sci. Part A Polym. Chem., 32(2), 265-279. https://doi.org/10.1002/pola.1994.080320207.
- Albertsson, A.C. and Eklund, M. (1995), "Influence of molecular structure on the degradation mechanism of degradable polymers: In vitro degradation of poly(trimethylene carbonate), poly(trimethylene carbonateco-caprolactone) and poly(adipic anhydride)", J. Appl. Polym. Sci., 57(1), 87-103. https://doi.org/10.1002/app.1995.070570109.
- Ali, S.A.M., Doherty, P.J. and Williams, D.F. (1993), "Mechanisms of polymer degradation in implantable devices. 2. poly (DL-lactic acid)", J. Biomed. Mater. Res., 27(11), 1409-1418. https://doi.org/10.1002/jbm.820271108.
- Anderson, D.G., Lynn, D.M. and Langer, R. (2003), "Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery", Angew. Chem. Int. Ed., 42(27), 3153-3158. https://doi.org/10.1002/ange.200351244.
- Barrera, D.A., Zylstra, E., Lansbury, P.T. and Langer, R. (1995), "Copolymerization and degradation of poly (lactic acid-co-lysine)", Macromolecules, 28(2), 425-432. https://doi.org/10.1021/ma00106a004.
-
Bat, E., Plantinga, J.A., Harmsen, M.C., van Luyn, M.J.A., Zhang, Z., Grijpma, D.W. and Feijen, J. (2008), "Trimethylene carbonate and
$\epsilon$ -caprolactone based (co) polymer networks: mechanical properties and enzymatic degradation", Biomacromolecules, 9(11), 3208-3215. https://doi.org/10.1021/bm8007988. - Bat, E., Kothman, B.H.M., Higuera, G.A., van Blitterswijk, C.A., Feijen, J. and Grijpma, D.W. (2010), "Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds", Biomaterials, 31(33), 8696-8705. https://doi.org/10.1016/J.BIOMATERIALS.2010.07.102.
-
Bat, E., van Kooten, T.G., Harmsen, M.C., Plantinga, J.A., van Luyn, M.J.A., Feijen, J. and Grijpma, D.W. (2013), "Physical properties and erosion behavior of poly(trimethylene carbonate-co-
${\varepsilon}$ -caprolactone) networks", Macromol. Biosci., 13(5), 573-583. https://doi.org/10.1002/mabi.201200373. - Bertrand, N. and Leroux, J.C. (2012), "The journey of a drug-carrier in the body: An anatomo-physiological perspective", J. Control. Release, 161(2), 152-163. https://doi.org/10.1016/j.jconrel.2011.09.098.
- Boontheekul, T. and Mooney, D.J. (2003), "Protein-based signaling systems in tissue engineering", Curr. Opion. Biotechnol., 14(5), 559-565. https://doi.org/10.1016/j.copbio.2003.08.004.
- Burnham, N.L. (1994), "Polymers for delivering peptides and proteins", Am. J. Health-Syst. Pharm., 51(2), 210-218. https://doi.org/10.1093/ajhp/51.2.210.
- Chen, R.R. and Mooney, D.J. (2003), "Polymeric growth factor delivery strategies for tissue engineering", Pharm. Res., 20(8), 1103-1112. https://doi.org/10.1023/A:1025034925152.
- Damodaran, V.B., Bhatnagar, D. and Murthy, N.S. (2016), Biomedical Polymers: An Overview Biomedical Polymers: Synthesis and Processing, Springer International Publishing, New Jersey, U.S.A. https://doi.org/10.1007/978-3-319-32053-3.
- Dhandayuthapani, B., Yoshida, Y., Maekawa, T. and Kumar, D.S. (2011), "Polymeric scaffolds in tissue engineering application: a review", Int. J. Polym. Sci., 2011, 290602. https://doi.org/10.1155/2011/290602.
-
Fabre, T., Schappacher, M., Bareille, R., Dupuy, B., Soum, A., Bertrand-Barat, J., Baquey, C., Schappacher, M., Bareille, R., Dupuy, B. and Baquey, C. (2001), "Study of a (trimethylenecarbonate-co-
${\varepsilon}$ -caprolactone) polymer-part 2: In vitro cytocompatibility analysis and in vivo ED1 cell response of a new nerve guide", Biomaterials, 22(22), 2951-2958. https://doi.org/10.1016/S0142-9612(01)00012-6. - Feijen, J., Pego, A.P.P., Siebum, B., Poot, A.A., Van Luyn, M.J.A., Gallego Van Seijen, X.J., Grijpma, D.W., Poot, A.A., Grijpma, D.W. and Feijen, J. (2003), "Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering", Tissue Eng., 9(5), 981-994. https://doi.org/10.1089/107632703322495628.
- Garvin, K.L., Miyano, J.A., Robinson, D., Giger, D., Novak, J. and Radio, S. (1994), "Polylactide/polyglycolide antibiotic implants in the treatment of osteomyelitis. a canine model", J. Bone Joint Surg. Am., 76(10), 1500-1506. https://doi.org/10.2106/00004623-199410000-00009.
- Gavasane, A.J. and Pawar, H.A. (2014), "Synthetic biodegradable polymers used in controlled drug delivery system: an overview", Clin. Pharm. Biopharm., 3(2), 1-7. http://dx.doi.org/10.4172/2167-065X.1000121.
- Gentile, P., Chiono, V., Carmagnola, I. and Hatton, P. (2014), "An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering", Int. J. Mol. Sci., 15(3), 3640-3659. https://doi.org/10.3390/ijms15033640.
- Griffith, L.G. (2002), "Emerging design principles in biomaterials and scaffolds for tissue engineering", Ann. N.Y. Acad. Sci., 961(1), 83-95. https://doi.org/10.1111/j.1749-6632.2002.tb03056.x.
-
Grijpma, D.W., Bat, E., Feijen, J., Plantinga, J.A., Harmsen, M.C., Van Luyn, M.J.A.A., Feijen, J. and Grijpma, D.W. (2010), "In vivo behavior of trimethylene carbonate and
${\varepsilon}$ -caprolactone-based (co)polymer networks: Degradation and tissue response", J. Biomed. Mater. Res. Part A, 95A(3), 940-949. https://doi.org/10.1002/jbm.a.32921. -
Han, J., Branford-White, C.J. and Zhu, L.M. (2010), "Preparation of poly(
${\varepsilon}$ -caprolactone)/poly(trimethylene carbonate) blend nanofibers by electrospinning", Carbohydr. Polym., 79(1), 214-218. https://doi.org/10.1016/j.carbpol.2009.07.052. - Hofmann, C., Qi, W., Landon, C., Therien, M., Dewhirst, M. and Palmer, G. (2013), "In vitro drug release and in vivo tumor delivery of near-infrared emissive biodegradable polymersomes containing poly (ethylene glycol) and randomized poly (trimethylene carbonate-co-caprolactone)", Proceedings of the Controlled Release Society Annual Meeting, Honolulu, Hawaii, July.
- Hossain, M.S., Mohamed, F. and Mohd Shafri, M.A. (2019), "Gentamicin sulphate-Nigella sativa oil-loaded poly(trimethylene carbonate-co-caprolactone) beads: a promising treatment for osteomyelitis", Proceedings of the AIMST International Pharmacy Conference 2019, Bedong, Kedah Darul Aman, Malaysia, November.
- Hou, Z., Hu, J., Li, J., Zhang, W., Li, M., Guo, J., Yang, L. and Chen, Z. (2017), "The in vitro enzymatic degradation of cross-linked poly(trimethylene carbonate) networks", Polymers, 9(11), 605. https://doi.org/10.3390/polym9110605.
-
Hu, Y. and Zhu, K.J. (2003), "Preparation, characterization and properties of poly (2, 2-dimethyl trimethylene carbonate-co-
${\varepsilon}$ -caprolactone)-block-poly (ethylene glycol)", J. Biomater. Sci. Polym. Ed., 14(12), 1363-1376. https://doi.org/10.1163/156856203322599707. - Hwang, S.J. and Davis, M.E. (2001), "Cationic polymers for gene delivery: Designs for overcoming barriers to systemic administration", Curr. Opin. Mol, Ther., 3(2), 183-191.
- Kanellakopoulou, K., Kolia, M., Anastassiadis, A., Korakis, T., Giamarellos-Bourboulis, E.J., Andreopoulos, A., Dounis, E. and Giamarellou, H. (1999), "Lactic acid polymers as biodegradable carriers of fluoroquinolones: an in vitro study", Antimicrob. Agents Chemother., 43(3), 714-716. https://doi.org/10.1128/AAC.43.3.714.
- Kluin, O.S., van der Mei, H.C., Busscher, H.J. and Neut, D. (2009), "A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate)" Biomaterials, 30(27), 4738-4742. https://doi.org/10.1016/j.biomaterials.2009.05.012.
- Kluin, O.S., van der Mei, H.C., Busscher, H.J. and Neut, D. (2013), "Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis", Expert Opin. Drug Deliv., 10(3), 341-351. doi: https://doi.org/10.1517/17425247.2013.751371.
- Kluin, O.S., Busscher, H.J., Neut, D. and van der Mei, H.C. (2016), "Poly (trimethylene carbonate) as a carrier for rifampicin and vancomycin to target therapy-recalcitrant staphylococcal biofilms", J. Orthop. Res., 34(10), 1828-1837. https://doi.org/10.1002/jor.23194.
- Langer, R. and Peppas, N.A. (2003), "Advances in biomaterials, drug delivery, and bionanotechnology", AIChE J., 49(12), 2990-3006. https://doi.org/10.1002/aic.690491202.
- Liebler, D.C. and Guengerich, F.P. (2005), "Elucidating mechanisms of drug-induced toxicity", Nat. Rev. Drug Discov., 4(5), 410-420. https://doi.org/10.1038/nrd1720.
- Maitz, M.F. (2015), "Applications of synthetic polymers in clinical medicine" Biosurf. Biotribol., 1(3), 161-176. https://doi.org/10.1016/j.bsbt.2015.08.002.
- Markovic, G., Marinovic-Cincovic, M., Jovanovic, V., Samarzija-Jovanovic, S. and Budinski-Simendic, J. (2016), Polymer Science: Research Advances, Practical Applications and Educational Aspects, Lisbon Formatex Research Center, Madrid, Spain.
- Nam, K., Watanabe, J. and Ishihara, K. (2004), "Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers", Int. J. Pharm., 275(1-2), 259-269. https://doi.org/10.1016/j.ijpharm.2004.02.009.
- Neut, D., Kluin, O.S., Crielaard, B.J., Van Der Mei, H.C., Busscher, H.J. and Grijpma, D.W. (2009), "A biodegradable antibiotic delivery system based on poly-(trimethylene carbonate) for the treatment of osteomyelitis", Acta Orthop., 80(5), 514-519. https://doi.org/10.3109/17453670903350040.
- Ozdil, D. and Aydin, H.M. (2014), "Polymers for medical and tissue engineering applications", J. Chem. Technol. Biotechnol., 89(12), 1793-1810. https://doi.org/10.1002/jctb.4505.
-
Palard, I., Schappacher, M., Belloncle, B., Soum, A. and Guillaume, S.M. (2007), "Unprecedented polymerization of trimethylene carbonate Initiated by a samarium borohydride complex: Mechanistic insights and copolymerization with
${\varepsilon}$ -caprolactone", Chem. Eur. J., 13(5), 1511-1521. https://doi.org/10.1002/chem.200600843. - Park, K.I., Teng, Y.D. and Snyder, E.Y. (2002), "The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue", Nat. Biotechnol., 20(11), 1111-1117. https://doi.org/10.1038/nbt751.
-
Pego, A.P., Poot, A.A., Grijpma, D.W. and Feijen, J. (2001), "Copolymers of trimethylene carbonate and
${\varepsilon}$ - caprolactone for porous nerve guides: Synthesis and properties", J. Biomater. Sci., Polym. Ed., 12(1), 35-53. https://doi.org/10.1163/156856201744434. - Pego, A.P., Poot, A.A., Grijpma, D.W. and Feijen, J. (2002), "In vitro degradation of trimethylene carbonate based (co)polymers", Macromol. Biosci., 2(9), 411-419. https://doi.org/10.1002/mabi.200290000.
- Pego, A.P., Grijpma, D.W. and Feijen, J. (2003a), "Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks", Polymer, 44(21), 6495-6504. https://doi.org/10.1016/s0032-3861(03)00668-2.
- Pego, A.P., Poot, A.A., Grijpma, D.W. and Feijen, J. (2003b), "Biodegradable elastomeric scaffolds for soft tissue engineering", J. Control. Release, 87(1-3), 69-79. https://doi.org/10.1016/S0168-3659(02)00351-6.
-
Pego, A.P., Van Luyn, M.J.A., Brouwer, L.A., Van Wachem, P.B., Poot, A.A., Grijpma, D.W. and Feijen, J. (2003c), "In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or
${\varepsilon}$ -caprolactone: Degradation and tissue response", J. Biomed. Mater. Res. Part A, 67(3), 1044-1054. https://doi.org/10.1002/jbm.a.10121. -
Pires, L.R., Guarino, V., Oliveira, M.J., Ribeiro, C.C., Barbosa, M.A., Ambrosio, L. and Pego, A.P. (2013), "Ibuprofen-loaded poly(trimethylene carbonate-co-
${\varepsilon}$ -caprolactone) electrospun fibres for nerve regeneration", J. Tissue Eng. Regen. Med., 10(3), 154-166. https://doi.org/10.1002/term.1792. - Pires, L.R., Lopes, C.D.F., Salvador, D., Rocha, D.N. and Pego, A.P. (2017), "Ibuprofen-loaded fibrous patches-taming inhibition at the spinal cord injury site", J. Mater. Sci. Mater. Med., 28(10), 157. https://doi.org/10.1007/s10856-017-5967-7.
-
Pitt, G.G., Gratzl, M.M., Kimmel, G.L., Surles, J. and Sohindler, A. (1981), "Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (
${\varepsilon}$ -caprolactone) and their copolymers in vivo", Biomaterials, 2(4), 215-220. https://doi.org/10.1016/0142-9612(81)90060-0. - Podual, K., Doyle, F.J. and Peppas, N.A. (1997), Glucose-Sensitive Cationic Hydrogels: Preparation, Characterization and Modeling of Swelling Properties, American Institute of Chemical Engineers, Washington, U.S.A.
- Putnam, D., Gentry, C.A., Pack, D.W. and Langer, R. (2001), "Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini", Proc. Natl. Acad. Sci., 98(3), 1200-1205. https://doi.org/10.1073/pnas.98.3.1200.
- R&M. (2018), Implantable biomaterials - Global market outlook (2017-2026), Research and Markets, Dublin 8, Ireland. https://www.researchandmarkets.com/reports/4613489/implantable-biomaterials-global-marketoutlook.
- Rancourt, J. (2019), SGS Polymer solutions incorporated; SGS Polymer Solutions (SGS PSI), Christiansburg, VA 24073, U.S.A. https://www.polymersolutions.com.
- Rebelo, R., Fernandes, M. and Fangueiro, R. (2017), "Biopolymers in medical implants: A brief review", Proc. Eng., 200, 236-243. https://doi.org/10.1016/j.proeng.2017.07.034.
-
Rocha, D.N., Brites, P., Fonseca, C. and Pego, A.P. (2014), "Poly (trimethylene carbonate-co-
${\varepsilon}$ -caprolactone) promotes axonal growth", PLoS One, 9(2). https://doi.org/10.1371/journal.pone.0088593. - Rostami-Hodjegan, A. and Tucker, G.T. (2007), "Simulation and prediction of in vivo drug metabolism in human populations from in vitro data", Nat. Rev. Drug Discov., 6, 140-148. https://doi.org/10.1038/nrd2173.
- Saman, R.A. and Iqbal, M. (2019), Nanotechnology-Based Drug Delivery Systems: Past, Present and Future, Springer, Kota Kinabalu, Malaysia.
-
Schappacher, M., Fabre, T., Mingotaud, A.F. and Soum, A. (2001), "Study of a (trimethylenecarbonate-co-
${\varepsilon}$ -caprolactone) polymer-part 1: Preparation of a new nerve guide through controlled random copolymerization using rare earth catalysts", Biomaterials, 22(21), 2849-2855. https://doi.org/10.1016/S0142-9612(01)00029-1. - Sigma, A. (2019), Product Specification: Poly(trimethylene carbonate-co-caprolactone); Sigma-Aldrich Co. https://www.sigmaaldrich.com.
- Song, R., Murphy, M., Li, C., Ting, K., Soo, C. and Zheng, Z. (2018), "Current development of biodegradable polymeric materials for biomedical applications", Drug Des. Dev. Ther., 12, 3117-3145. https://doi.org/10.2147/DDDT.S165440.
- Stratton, S., Shelke, N.B., Hoshino, K., Rudraiah, S. and Kumbar, S.G. (2016), "Bioactive polymeric scaffolds for tissue engineering", Bioact. Mater., 1(2), 93-108. https://doi.org/10.1016/j.bioactmat.2016.11.001.
- Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P. and Bannerjee, S.K. (2012), "Drug delivery systems: An updated review", Int. J. Pharm. Investig., 2(1), 2-11. https://doi.org/10.1016/10.4103/2230-973X.96920.
- Ulery, B.D., Nair, L.S. and Laurencin, C.T. (2011), "Biomedical applications of biodegradable polymers", J. Polym. Sci. Part B Polym. Phys., 49(12), 832-864. https://doi.org/10.1002/polb.22259.
- Vleggeert-Lankamp, C.L.A.M., Wolfs, J., Pego, A.P., van den Berg, R., Feirabend, H. and Lakke, E. (2008), "Effect of nerve graft porosity on the refractory period of regenerating nerve fibers", J. Neurosurg., 109(2), 294-305. https://doi.org/10.3171/jns/2008/109/8/0294.
-
Yang, L.Q., Yang, D., Guan, Y.M., Li, J.X. and Li, M. (2012), "Random copolymers based on trimethylene carbonate and
${\varepsilon}$ -caprolactone for implant applications: Synthesis and properties", J. Appl. Polym. Sci., 124(5), 3714-3720. https://doi.org/10.1002/app.35355. - Yang, L., Li, J., Li, M. and Gu, Z. (2016), "The in vitro and in vivo degradation of cross-linked poly(trimethylene carbonate)-based networks", Polymers (Basel), 8(4), 151. https://doi.org/10.3390/polym8040151.
-
Yang, L., Li, J., Meng, S., Jin, Y., Zhang, J., Li, M., Guo, J. and Gu, Z. (2014), "The in vitro and in vivo degradation behavior of poly (trimethylene carbonate-co-
${\varepsilon}$ -caprolactone) implants", Polymer, 55(20), 5111-5124. https://doi.org/10.1016/J.POLYMER.2014.08.027. - Yannas, I.V., Burke, J.F., Orgill, D.P. and Skrabut, E.M. (1982), "Wound tissue can utilize a polymeric template to synthesize a functional extension of skin", Science, 215(4529), 174-176. https://doi.org/10.1126/science.7031899.
- Zhang, Z., Grijpma, D.W. and Feijen, J. (2006), "Thermoplastic elastomers based on poly (lactide)-poly (trimethylene carbonate-co-caprolactone)-poly (lactide) triblock copolymers and their stereocomplexes", J. Control. Release, 116(2), 29-31. https://doi.org/10.1016/j.jconrel.2006.09.033.
- Zhu, K.J., Hendren, R.W., Jensen, K. and Pitt, C.G. (1991), "Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate)", Macromolecules, 24(8), 1736-1740. https://doi.org/10.1021/ma00008a008.
- Zisch, A.H., Lutolf, M.P. and Hubbell, J.A. (2003), "Biopolymeric delivery matrices for angiogenic growth factors", Cardiovasc. Pathol., 12(6), 295-310. https://doi.org/10.1016/S1054-8807(03)00089-9.
- Zurita, R., Puiggali, J. and Rodriguez-Galan, A. (2006), "Loading and release of ibuprofen in multi- and monofilament surgical sutures", Macromol. Biosci., 6(9), 767-775. https://doi.org/10.1002/mabi.200600084.