DOI QR코드

DOI QR Code

Effect of force during stumbling of the femur fracture with a different ce-mented total hip prosthesis

  • El Sallah, Zagane Mohammed (Department of Mechanical Engineering, Faculty of Science Applique, University of Tiaret) ;
  • Ali, Benouis (Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Abderahmen, Sahli (Department of Mechanical Engineering, University of Sidi Bel Abbes)
  • Received : 2018.06.29
  • Accepted : 2020.03.12
  • Published : 2020.03.25

Abstract

Total hip prosthesis is used for the patients who have hip fracture and are unable to recover naturally. To de-sign highly durable prostheses one has to take into account the natural processes occurring in the bone. Finite element analysis is a computer based numerical analysis method which can be used to calculate the response of a model to a set of well-defined boundary conditions. In this paper, the static load analysis is based, by se-lecting the peak load during the stumbling activity. Two different implant materials have been selected to study appropriate material. The results showed the difference of maximum von Misses stress and detected the frac-ture of the femur shaft for different model (Charnley and Osteal) implant with the extended finite element method (XFEM), and after the results of the numerical simulation of XFEM for different was used in deter-mining the stress intensity factors (SIF) to identify the crack behavior implant materials for different crack length. It has been shown that the maximum stress intensity factors were observed in the model of Charnley.

Keywords

References

  1. ABAQUS/Standard Version 6.13-1 (2013), Analysis User's Manual, Dassault Systemes Simulia Corporation, Providence, RI, Hibbitt, Karlsson, Sorensen, Abaqus 6.13.1 Manual.
  2. Abdel-Wahab, A.A., Maligno, A.R. and Silberschmidt, V.V. (2012), "Micro-scale modelling of bovine cortical bone fracture: Analysis of crack propagation and microstructure using X-FEM", Comput. Mater. Sci., 52, 128-135. https://doi.org/10.1016/j.commatsci.2011.01.021.
  3. Abdelaziz, Y. and Hamouine, A. (2008), "A survey of the extended finite element", Comput. Struct., 86, 1141-1151. https://doi.org/10.1016/j.compstruc.2007.11.001.
  4. Behrens, B.A., Nolte, I., Wefstaedt, P., Stukenborg-Colsman, C. and Bouguecha, A. (2009), "Numerical investigations on the strain-adaptive bone remodelling in the periprosthetic femur: influence of the boundary conditions", Biomed. Eng. Online, 8(1), 7. https://doi.org/10.1186/1475-925X-8-7.
  5. Bergmann, G. (2001), "HIP98", Free University, BerLin.
  6. Bergmann, G., Graichen, F. and Rohlmann, A. (1993), "Hip joint forces during walking and running, measured in two patients", J. Biomech., 26, 969-990. https://doi.org/10.1016/0021-9290(93)90058-M.
  7. Beswick, A. and Blom, A.W. (2011), "Bone graft substitutes in hip revision surgery: a comprehensive overview", Injury, 42, S40-S46. https://doi.org/10.1016/j.injury.2011.06.009.
  8. Bonney, H., Colston, B.J. and Goodman, A.M. (2011), "Regional variation in the mechanical properties of cortical bone from the porcine femur", Med. Eng. Phys., 33(4), 513-520. https://doi.org/10.1016/j.medengphy.2010.12.002.
  9. Bouiadjra, B.B., Belarbi, A., Benbarek, S., Achour, T. and Serier, B. (2007), "FE analysis of the behaviour of microcracksin the cement mantle of reconstructed acetabulum in the total. hip prosthesis", Comput. Mater. Sci., 40, 485-491. https://doi.org/10.1016/j.commatsci.2007.02.006.
  10. Bronzino, J.D. (2000), The Biomedical Engineering Handbook, Volume 1, CRC Press.
  11. Budyn, E. and Hoc, T. (2007), "Multiple scale modeling for cortical bone fracture in tension using X-FEM", Eur. J. Comput. Mech./Revue Europeenne de Mecanique Numerique, 16(2), 213-236. https://doi.org/10.3166/remn.16.213-236.
  12. Darwish, S.M. and Al-Samhan, A.M. (2009), "Optimization of artificial hip joint parameters", Material wissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prufung, Eigenschaften und Anwendungen technischer Werkstoffe, 40(3), 218-223. https://doi.org/10.1002/mawe.200900430.
  13. El'Sheikh, H.F., MacDonald, B.J. and Hashmi, M.S.J. (2003), "Finite element simulation of the hip joint during stumbling: A comparison between static and dynamic loading", J. Mater. Proc. Technol., 43, 249-255. https://doi.org/10.1016/S0924-0136(03)00352-2.
  14. Gao, L., Wang, F., Yang, P. and Jin, Z. (2009), "Effect of 3D physiological loading and motion on elastohydrodynamic lubrication of metal-on-metal total hip replacements", Med. Eng. Phys., 31, 720-729. https://doi.org/10.1016/j.medengphy.2009.02.002.
  15. Giner, E., Sukumar, N., Tarancon, J.E. and Fuenmayor, F.J. (2009), "An Abaqus implementation of the extended finite element method", Eng. Fract. Mech., 76, 347-368. https://doi.org/10.1016/j.engfracmech.2008.10.015.
  16. Harsha, A.P. and Joyce, T.J. (2013), "Comparative wear tests of ultra-high molecular weight polyethylene and cross-linked polyethylene", J. Eng. Med., 227(5), 600-608. https://doi.org/10.1177/0954411913479528.
  17. Kayabasi, O. and Erzincanli, F. (2006), "Finite element modelling and analysis of a new cemented hip prosthesis", Adv. Eng. Softw., 37(7), 477-483. https://doi.org/10.1016/j.advengsoft.2005.09.003.
  18. Li, S., Abdel-Wahab, A., Demirci, E. and Silberschmidt, V.V. (2014), "Fracture process in cortical bone: XFEM analysis of microstructured models", Fracture Phenomena in Nature and Technology, Springer, Cham. https://doi.org/10.1007/978-3-319-04397-5_5.
  19. Liu, X.C., Qin, X. and Du, Z. (2010), "Bone fracture analysis using the extended finite element method (XFEM) with abaqus", The 34th Annual Meeting of the American Society of Biomechanics, Brown University.
  20. Mischinski, S. and Ural, A. (2013), "Interaction of microstructure and microcrack growth in cortical bone: a finite element study", Comput. Meth. Biomech. Biomed. Eng., 16(1), 81-94. https://doi.org/10.1080/10255842.2011.607444.
  21. Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46, 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J.
  22. Monif, M.M. (2012), "Finite element study on the predicted equivalent stresses in the artificial hip joint", J. Biomed. Sci. Eng., 5, 43-51. https://doi.org/10.4236/jbise.2012.52007.
  23. Pyburn, E. and Goswami, T. (2004), "Finite element analysis of femoral components paper III - hip joints", Mater. Des., 25(8), 705-713. https://doi.org/10.1016/j.matdes.2004.01.009.
  24. Qian, G., Gonzalez-Albuixech, V. F., Niffenegger, M. and Giner, E. (2016), "Comparison of KI calculation methods", Eng. Fract. Mech., 156, 52-67. https://doi.org/10.1016/j.engfracmech.2016.02.014.
  25. Ramaniraka, N.A., Rakotomanana, L.R. and Leyvraz, P.F. (2000), "The fixation of cemented femoral component", J. Bone Joint Surgery (Br), 82, 297-303.
  26. Shankar, S. and Manikandan, M. (2014), "Mankandan dynamic contact analysis of total hip prosthesis during stumbling cycle", J. Mech. Med. Biol., 14(3), 1450041. https://doi.org/10.1142/S0219519414500419.
  27. Sukumar, N., Moes, N., Moran, N. and Belytschko, T. (2000), "Extended finite element method for threedimensional crack modelling", Int. J. Numer. Meth. Eng., 48, 1549-1570. https://doi.org/10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A.
  28. Waisman, H. (2010), "An analytical stiffness derivative extended finite element technique for extraction of crack tip Strain Energy Release Rates", Eng. Fract. Mech., 77, 3204-3215. https://doi.org/10.1016/j.engfracmech.2010.08.015.
  29. Wyart, E., Duflot, M., Coulon, D., Martiny, P., Pardoen, T., Remacle, J.F. and Lani, F. (2008), "Substructuring FE-XFE approaches applied to three-dimensional crack propagation", J. Comput. Appl. Math., 215, 626-638. https://doi.org/10.1016/j.cam.2006.03.066.