References
- Bakhadda, B., Bachir Bouiadjra, M., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., 27(5), 311-324. https://doi.org/10.12989/was.2018.27.5.311.
- Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/eas.2018.14.2.103.
- Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061.
- Cherif, R.H., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, H. and Bensattalah, T. (2018), "Vibration analysis of nano beam using differential transform method including thermal effect", J. Nano Res., 54, 1-14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1.
- Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. B Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.
- Civalek, O. and Acar, M. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", Int. J. Press. Vessel Pip., 84(9), 527-535. https://doi.org/10.1016/j.compositesb.2016.11.030.
- Cowin, S. (2001), Bone Mechanic Handbook, Second Edition, CRC, Washengton DC, Newyork.
- Currey, D.J. (2011), "The structure and mechanics of bone", Mater. Sci., 47, 41-54. https://doi.org/10.1007/s10853-011-5914-9.
- Currey, J.D., Pitchford, J.W. and Baxterand, P.D. (2006), "Variability of the mechanical properties of bone, and its evolutionary consequences", R. Soc., 27, 127-135. https://doi.org/10.1098/rsif.2006.0166.
- Demir, C. and Civalek, O. (2017), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091.
- Dullemeijer, P. and Fruitema, F. (1981), "The relation between osteon orientation and shear modulus", Netherlands J. Zool., 32(3), 300-306. https://doi.org/10.1163/002829681X00338.
- Ebrahimi, F., Zokaee, F. and Mahesh, V. (2019), "Analysis of the size-dependent wave propagation of a single lamellae based on the nonlocal strain gradient theory", Biomater. Biomech. Bioeng., 1(4), 45-58. https://doi.org/10.12989/bme.2019.4.1.045.
- Faingold, A., Cohen, S.R., Reznikov, N. and Wagner, H.D. (2013), "Osteonal lamellae elementary units: Lamellar microstructure, curvature and mechanical properties", Acta Biomater., 9, 5956-5962. https://doi.org/10.1016/j.actbio.2012.11.032.
- Hamed, E., Jasiuk, I., Yoo, A., Lee, Y. and Liszka, T. (2012), "Multi-scale modelling of elastic moduli of trabecular bone", J. R. Soc., 9, 1654-1673. https://doi.org/10.1098/rsif.2011.0814.
- Hamed, E., Lee, Y. and Jasiuk, I. (2010), "Multiscale modeling of elastic properties of cortical bone", Acta Mechanica, 213, 131-154. https://doi.org/10.1007/s00707-010-0326-5.
- Hassenkam, T., Fantner, G.E., Cutroni, J.A., Weaver, J.C., Morse, D.E. and Hansma, P.K. (2004), "Highresolution AFM imaging of intact and fractured trabecular bone", Bone., 35, 4-10. https://doi.org/10.1016/j.bone.2004.02.024.
- Henderson, J.P., Plummer, A. and Johnston, N. (2018), "An electro-hydrostatic actuator for hybrid activepassive vibration isolation", Int. J. Hydromechatron., 1(1), 47-71. https://doi.org/10.1504/IJHM.2018.090305
- Hoffler, C.E., Moore, K.E., Kozloff, K., Zysset, P.K., Brown, M.B. and Goldstein, S.A. (2000), "Heterogeneity of bone lamellar-level elastic moduli", Bone., 26(6), 603-609. https://doi.org/10.1016/S8756-3282(00)00268-4.
- Karami, B., Janghorban, M. and Tounsi, A. (2018), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025.
- Korsa, R. and Tomas, M. (2012), "Numerical identification of orthotropic coefficients of the lamella of a bone's osteon", Bull. Appl. Mech., 8(31), 45-53.
- Korsa, R., Lukes, J., Sepitka, J. and Mares, T. (2014), "Elastic properties of human osteon and osteonal lamella computed by a bidirectional micromechanical model and validated by nanoindentation", J. Biomech. Eng.,137(8), 081002. https://doi.org/10.1115/1.4030407.
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Liu, D., Weiner, S. and Wagner, H.D. (1999), "Anisotropic mechanical properties of lamellar bone using miniature cantilever bending specimens", J. Biomech., 32, 647-654. https://doi.org/10.1016/S0021-9290(99)00051-2.
- Mercan, K. and Civalek, O. (2017), "Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocalelasticity using the method of HDQ", Compos. Part B., 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067.
- Mitchell, J. and van Heteren, A.H. (2016), "A literature review of the spatial organization of lamellar bone", Comptes Rendus Palevol, 15(1-2), 23-31. https://doi.org/10.1016/j.crpv.2015.04.007.
- Mohammadimehr, M. and Shahedi, S. (2017), "High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM", Compos. Part B., 108, 91-107. https://doi.org/10.1016/j.compositesb.2016.09.040.
- Mokhtari, F. and Beni, Y.T. (2016), "Free vibration analysis of microtubules as orthotropic elastic shells using stress and strain gradient elasticity theory", J. Solid. Mech., 8(3), 511-529.
- Ranglin, S., Das, D., Mingo, A., Ukinamemen, O., Gailani, G., Cowin, S. and Cardoso, L. (2009), "Development of a mechanical system for osteon isolation", Proceedings of the ASEE Mid-Atlantic Conference, PA, October.
- Ren, L., Yang, P., Wang, Z., Zhang, J., Ding, C. and Shang, P. (2015), "Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level", J. Mech. Behav. Biomed. Mater., 50, 104-122. https://doi.org/10.1016/j.jmbbm.2015.04.021.
- Rho, J.Y., Kuhn-Spearing, L. and Zioupos, P. (1998), "Mechanical properties and the hierarchical structure of bone", Med. Eng. Phys., 20, 92-102. https://doi.org/10.1016/S1350-4533(98)00007-1.
- Sun, X., Zhao, H., Yu, Y., Zhang, S., Ma, Z., Li, N., ... & Hou, P. (2016), "Variations of mechanical property of out circumferential lamellae in cortical bone along the radial by nanoindentation", AIP Adv., 6, 115116. https://doi.org/10.1063/1.4968179.
- Tanaka, Y. (2018), "Active vibration compensator on moving vessel by hydraulic parallel mechanism", Int. J. Hydromechatron., 1(3), 350-359. https://doi.org/10.1504/ijhm.2018.094887
- Unal, M., Cingoz, F., Bagcioglu, C., Sozer, Y. and Akkus, O. (2018), "Interrelationships between electrical, mechanical and hydration properties of cortical bone", J. Mech. Behav. Biomed. Mater., 77, 12-23. https://doi.org/10.1016/j.jmbbm.2017.08.033.
- Vercher, A., Giner, E., Arango, C., Tarancon, J.E. and Fuenmayor, F.J. (2013), "Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models", Biomech. Model. Mechanobiol., 13(2), 437-449. https://doi.org/10.1007/s10237-013-0507-y.
- Wang, Z., Xie, Z. and Huang, W. (2018), "A pin-moment model of flexoelectric actuators", Int. J. Hydromech., 1(1), 72-90. https://doi.org/10.1504/IJHM.2018.090306
- Weiner, S., Wolfie, T. and Wagner, H.D. (1999), "Lamellar bone: Structure-function relations", J. Struct. Biol., 126, 241-255. https://doi.org/10.1006/jsbi.1999.4107.
- Xie, S., Manda, K., Wallace, R.J., Levrero-Florencio, F., Simpson, A.H.R. and Pankaj, P. (2017), "Time dependent behaviour of trabecular bone at multiple load levels", Ann. Biomed. Eng., 45(5), 1219-1226. https://doi.org/10.1007/s10439-017-1800-1.
- Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
- Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.1016/j.compositesb.2018.09.051.