참고문헌
- Beck, A. and Tetruashvili, L. (2013). On the convergence of block coordinate descent type methods, SIAM Journal on Optimization, 23, 2037-2060. https://doi.org/10.1137/120887679
- Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F. J., Teichmann, S. A., Marioni, J. C., and Stegle, O. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells, Nature Biotechnology, 33, 155-160. https://doi.org/10.1038/nbt.3102
- Deng, Q., Ramskold, D., Reinius, B., and Sandberg, R. (2014). Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells, Science, 343, 193-196. https://doi.org/10.1126/science.1245316
- Haque, A., Engel, J., Teichmann, S. A., and Lonnberg, T. (2017). A practical guide to single-cell RNAsequencing for biomedical research and clinical applications, Genome Medicine, 9, 75. https://doi.org/10.1186/s13073-017-0467-4
- Kalisky, T. and Quake, S. R. (2011). Single-cell genomics, Nature Methods, 8, 311-314. https://doi.org/10.1038/nmeth0411-311
- Kvalseth, T. O. (1987). Entropy and correlation: some comments, IEEE Transactions on Systems, Man, and Cybernetics, 17, 517-519. https://doi.org/10.1109/TSMC.1987.4309069
- Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: analysis and an algorithm. In Advances in Neural Information Processing Systems, 849-856.
- Park, S., Xu, H., and Zhao, H. (2020). Integrating multidimensional data for clustering analysis with applications to cancer patient data, Journal of the American Statistical Association, In Press.
- Park, S. and Zhao, H. (2018). Spectral clustering based on learning similarity matrix, Bioinformatics, 34, 2069-2076. https://doi.org/10.1093/bioinformatics/bty050
- Park, S. and Zhao, H. (2019). Sparse principal component analysis with missing observations, Annals of Applied Statistics, 13, 1016-1042. https://doi.org/10.1214/18-AOAS1220
- Pollen, A. A., Nowakowski, T. J., Shuga, J., Wang, X., Leyrat, A. A., Lui, J. H., Li, N., Szpankowski, L., Fowler, B., Chen, P., and Ramalingam, N. (2014). Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex, Nature Biotechnology, 32, 1053-1058. https://doi.org/10.1038/nbt.2967
- Saha, A. and Tewari, A. (2013). On the nonasymptotic convergence of cyclic coordinate descent methods, SIAM Journal on Optimization, 23, 576-601. https://doi.org/10.1137/110840054
- Satija, R., Farrell, J. A., Gennert, D., Schier, A. F., and Regev, A. (2015). Spatial reconstruction of single-cell gene expression data, Nature Biotechnology, 33, 495-502. https://doi.org/10.1038/nbt.3192
- Schlitzer, A., Sivakamasundari, V., Chen, J., Sumatoh, H. R. B., Schreuder, J., Lum, J., Malleret, B., Zhang, S., Larbi, A., Zolezzi, F., and Renia, L. (2015). Identification of cDC1-and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow, Nature Immunology, 16, 718-728. https://doi.org/10.1038/ni.3200
- Shapiro, E., Biezuner, T., and Linnarsson, S. (2013). Single-cell sequencing-based technologies will revolutionize whole-organism science, Nature Reviews Genetics, 14, 618-630. https://doi.org/10.1038/nrg3542
- Stegle, O., Teichmann, S. A., and Marioni, J. C. (2015). Computational and analytical challenges in singlecell transcriptomics, Nature Reviews Genetics, 16, 133-145. https://doi.org/10.1038/nrg3833
- Ting, D. T., Wittner, B. S., Ligorio, M., Jordan, N. V., Shah, A. M., Miyamoto, D. T., Aceto, N., Bersani, F., Brannigan, B. W., Xega, K., and Ciciliano, J. C. (2014). Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells, Cell Reports, 8, 1905-1918. https://doi.org/10.1016/j.celrep.2014.08.029
- Treutlein, B., Brownfield, D. G., Wu, A. R., Neff, N. F., Mantalas, G. L., Espinoza, F. H., Desai, T. J., Krasnow, M. A. and Quake, S. R., (2014). Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq, Nature, 509, 371-375. https://doi.org/10.1038/nature13173
- von Luxburg, U. (2007). A tutorial on spectral clustering, Statistics and Computing, 17, 395-416. https://doi.org/10.1007/s11222-007-9033-z
- Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., and Batzoglou, S. (2017). Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning, Nature Methods, 14, 414-416. https://doi.org/10.1038/nmeth.4207
- Xu, C. and Su, Z. (2015). Identification of cell types from single-cell transcriptomes using a novel clustering method, Bioinformatics, 31, 1974-1980. https://doi.org/10.1093/bioinformatics/btv088
- Xu, Y. and Yin, W. (2017). A globally convergent algorithm for nonconvex optimization based on block coordinate update, Journal of Scientic Computing, 72, 700-734. https://doi.org/10.1007/s10915-017-0376-0