DOI QR코드

DOI QR Code

A brief study on the geometric mean

기하평균에 대한 소고

  • Yeo, In-Kwon (Department of Statistics, Sookmyung Women's University)
  • Received : 2020.04.06
  • Accepted : 2020.04.23
  • Published : 2020.08.31

Abstract

We review the characteristics of a geometric mean and statistical inferences based on geometric means. We also show that the statistical results obtained by the logarithmic transform and back-transformation are related to geometric means and explain how to interpret the results produced in this process.

이 소고에서는 기하평균의 성질과 기하평균과 관련된 통계적 추론에 대한 알아 본다. 로그변환-역변환을 통해 얻어진 통계적 추론 결과가 기하평균과 관련이 있다는 것을 보이고 이 과정에서 유도된 결과를 어떻게 해석해야 하는지를 설명한다.

Keywords

References

  1. Barlett, M. S. (1947). The use of transformations, Biometrics, 3, 39-52. https://doi.org/10.2307/3001536
  2. Box, G. E. P and Cox, D. R. (1964). An analysis of transformations, Journal of the Royal Statistical Society, Series B, 26, 211-252.
  3. Casella, G. and Berger, R. L. (1990). Statistical Inference, Thomson Information/Publishing Group.
  4. Duan, N. (1983). Smearing estimate: A nonparametric retransformation method, Journal of the American Statistical Association, 78, 605-610. https://doi.org/10.1080/01621459.1983.10478017
  5. Shapiro, C. M., Beckmann, E., Christiansen, N., Bitran, J. D., Kozloff, M., Billings, A. A., and Telfer, M. C. (1987). Immunologic status of patients in remission from Hodgkin's disease and disseminated malignancies, The American Journal of the Medical Sciences, 293, 366-370. https://doi.org/10.1097/00000441-198706000-00004
  6. Zhou, X. H. and Gao, S. (1997). Confidence intervals for the log-normal mean, Statistics in Medicine, 16, 783-790. https://doi.org/10.1002/(SICI)1097-0258(19970415)16:7<783::AID-SIM488>3.0.CO;2-2
  7. Zhou, X. H., Gao, S., and Hui, S. L. (1997). Methods for comparing the means of two independent lognormal samples, Biometrics, 53, 1129-1135. https://doi.org/10.2307/2533570