DOI QR코드

DOI QR Code

무인항공기를 활용한 항공자력탐사: 연구 동향 및 향후 과제

Aeromagnetic Exploration using Unmanned Aerial Vehicles: Current and Future Trends

  • Kim, Bona (KIGAM (Korea Institute of Geoscience and Mineral Resources))
  • 투고 : 2020.06.10
  • 심사 : 2020.08.19
  • 발행 : 2020.08.31

초록

무인항공기는 최근 10년간 빠르게 성장하고 있는 한편, 복잡하고 어려운 환경에서 적용가능하며, 높은 분해능을 가진 효율적인 탐사 기법의 필요성이 대두되고 있다. 이에 따라 기존의 탐사기술을 보완하고 대체할 수 있는 효율적인 탐사 방법으로 무인항공 탐사기술이 주목받고 있다. 특히나, 자력탐사기술은 무인항공기와 접목되어 빠르게 탐사 시장에서 자리를 잡아가고 있으며, 향후 활발하게 탐사분야에서 사용될 것이라고 기대된다. 국내 탐사시장에서 적절하게 활용되기 위해서는 최신 연구 동향에 대한 검토가 필요하며, 이를 위해 이 해설논문에서는 현재까지의 무인항공기반 자력탐사시스템 개발에 대한 연구동향들을 정리한 후, 향후과제들에 대해 검토하였다.

Unmanned aerial vehicle (UAV) technologies have grown rapidly over the past decade. Simultaneously, there is an increasing need for efficient high-resolution exploration techniques in complex environments. As a result, exploration technology using UAVs is gaining attention as an efficient method to complement and replace existing exploration technologies. In particular, magnetic exploration technology with UAVs is rapidly gaining ground in the field of exploration and is expected to be actively used in this field in the future. To properly use such technology in domestic exploration, it is necessary to review the latest research trends. Accordingly, this paper introduces the current state of UAV-based magnetic exploration technology studies and, based on this, discusses future research directions.

키워드

참고문헌

  1. Anderson, D. E., and Pita, A. C., 2005, Geophysical surveying with $GeoRanger^{TM}$ UAV, AIAA J., 50, 67-78.
  2. Caron, R., Samson, C., Straznicky, P., Ferguson, S., Archer, R., and Sander, L., 2011, Magnetic and magneto-gradiometric surveying using a simulated unmanned aircraft system, 81st Annual International Meeting, SEG, Expanded Abstracts, 861-865.
  3. Caron, R., Samson, C., Straznicky, P., Ferguson, S., and Sander, L., 2014, Aeromagnetic surveying using a simulated unmanned aircraft system, Geophys. Prospect., 62(2), 352-363. https://doi.org/10.1111/1365-2478.12075
  4. Chapman, A., 2016, Types of Drones: Multi-Rotor vs Fixedwing vs Single Rotor vs Hybrid VTOL, Australian Drone magazine, issue 3 (https://www.auav.com.au/articles/dronetypes/) (June 5, 2020 Accessed).
  5. Cherkasov, S., and Kapshtan, D., 2018, Unmanned Aerial Systems for Magnetic Survey, Drones: Applications, IntechOpen, 135-148.
  6. Cho, S., Park, J., and Park, G., 2015, Portable unmanned airship for magnetic-force surveying and a magnetic-force surveying system employing the same, United States Patent, 9030203.
  7. Cunningham, M., 2016, Aeromagnetic surveying with unmanned aircraft systems, M.S. thesis, Carleton University.
  8. Dalamagkidis, K., 2015, "Classification of UAVs" in Handbook of Unmanned Aerial Vehicles, Netherlands, Springer Science, 83-91.
  9. Forrester, R., Huq, M.S., Ahmadi, M., and Straznicky, P., 2013, Magnetic Signature Attenuation of an Unmanned Aircraft System for Aeromagnetic Survey, IEEE ASME Trans. Mechatron., 19(4), 1436-1446.
  10. Gavazzi, B., Le Maire, P., Munschy, M., and Dechamp, A., 2016, Fluxgate vector magnetometers: A multisensor device for ground, UAV, and airborne magnetic surveys, The Leading Edge, 35(9), 795-797. https://doi.org/10.1190/tle35090795.1
  11. Gee, J., S., Cande, S. C., Kent, D. V., and Paetner, R., 2008, Mapping geomagnetic field variations with unmanned airborne vehicles, Eos, Trans. Amer. Geophys. Union, 89(19), 178-179. https://doi.org/10.1029/2008EO190002
  12. GEM Systems Inc., 2013, GSMP-35 manual v8. Markham, Ontario, Canada, Gem Systems Inc., 1-88 (http://www.gemsys.ca/pdf/GSMP-35v8.0.pdf) (August 13, 2020 Accessed).
  13. Giordan, D., Adams, M. S., Aicardi, I., Alicandro, M., Allasia, P., Baldo, M., Berardinis, P. D., Dominici, D., Godone, D., Hobbs, P., Lechner, V., Niedzielski, T., Piras, M., Rotilio, M., Salvini, R., Segor, V., Sotier, B., and Troilo, F., 2020, The use of unmanned aerial vehicles (UAVs) for engineering geology applications, Bull. Eng. Geol. Environ., 2020, 1-45.
  14. Hashimoto, T., Koyama, T., Kaneko, T., Ohminato, T., Yanagisawa, T., Yoshimoto, M., and Suzuki, E., 2014, Aeromagnetic survey using an unmanned autonomous helicopter over Tarumae Volcano, northern Japan, Explor. Geophys., 45(1), 37-42. https://doi.org/10.1071/EG12087
  15. Hui, H., Jinsong, F., Junjie, L., and Shoubing, C., 2017, The design of the pilotless airborne aeromagnetic instrument with compensation algorithm, In 2017 13th IEEE International Conference on Electronic Measurement & Instruments, 524-529.
  16. Jackisch, R., Madriz, Y., Zimmermann, R., Pirttijarvi, M., Saartenoja, A., Heincke, B. H., Salmirinne, H., Kujasalo, J., Andreani, L., and Gloaguen, R., 2019, Drone-Borne Hyperspectral and Magnetic Data integration: Otanmaki Fe-Ti-V Deposit in Finland, Remote Sens., 11(18), 2084. https://doi.org/10.3390/rs11182084
  17. Kim, B., Lee, S., Jeong, S., Cho, S. J., Kim, C., and Son, J., 2019, Unmanned Airship Magnetic Survey System for Mineral Exploration, AGUFM, 2019, NS13B-0659.
  18. Malehmir, A., Dynesius, L., Paulusson, K., Paulusson, A., Johansson, H., Bastani, M., Wedmark, M., and Marsden, P., 2017, The potential of rotary-wing UAV-based magnetic surveys for mineral exploration: A case study from central Sweden, The Leading Edge, 36(7), 552-557. https://doi.org/10.1190/tle36070552.1
  19. Munschy, M., Boulanger, D., Ulrich, P., and Bouiflane, M., 2007, Magnetic mapping for the detection and characterization of UXO: Use of multi-sensor fluxgate 3-axis magnetometers and methods of interpretation, J. of Appl. Geophy., 61(3-4), 168-183. https://doi.org/10.1016/j.jappgeo.2006.06.004
  20. Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Peirce, J. W., Philips, J. D., and Ruder, M. E., 2005, The historical development of the magnetic method in exploration, Geophysics, 70(6), 33ND-61ND. https://doi.org/10.1190/1.2133784
  21. Parshin, A. V., Grebenkin, N., Morozov, V. A., Shikalenko, F., Sapunov, V., and Rzhevskaya, A., 2018a, "Quasi-terrestrial" UAV-based geophysical methods: Efficiency and role in geological prospecting, 14th Conference and Exhibition Engineering and Mining Geophysics 2018, 1-11.
  22. Parshin, A. V., Morozov, V. A., Blinov, A. V., Kosterev, A. N., and Budyak, A. E., 2018b, Low-altitude geophysical magnetic prospecting based on multirotor UAV as a promising replacement for traditional ground survey, Geo spat. Inf. Sci., 21(1), 67-74. https://doi.org/10.1080/10095020.2017.1420508
  23. Parvar, K., 2016, Development and evaluation of unmanned aerial vehicle (UAV) magnetometry systems, M.S. thesis, Queen's University, 1-141.
  24. Parvar, K., Braun, A., Layton-Matthews, D., and Burns, M., 2017, UAV magnetometry for chromite exploration in the Samail ophiolite sequence, Oman, J. Unmanned Veh. Syst., 6(1), 57-69.
  25. Pei, Y., Liu, B., Hua, Q., Liu, C., and Ji, Y., 2017, An aeromagnetic survey system based on an unmanned autonomous helicopter: Development, experiment, and analysis, Int. J. Remote Sens., 38(8-10), 3068-3083. https://doi.org/10.1080/01431161.2016.1274448
  26. Salman, M., 2017, UAVs and Geophysics: The way of the future, Int. J. Adv. Agr. Env. Eng., 4(1), 178-179.
  27. Samson, C., Straznicky, P., Laliberte, J., Caron, R., Ferguson, S., and Archer, R., 2010, Designing and building an unmanned aircraft system for aeromagnetic surveying, 80th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts,, 1167-1171.
  28. Smith, K., 1997, Cesium Optically Pumped Magnetometers - Basic Theory of Operation, San Jose, CA: Geometrics Inc., Technical Report M-TR91 (https://geometrics.com/wp-content/uploads/2018/10/M-TR91.pdf) (August 13, 2020 Accessed).
  29. Sterligov, B., and Cherkasov, S., 2016, Reducing magnetic noise of an unmanned aerial vehicle for high-quality magnetic surveys, Int. J. Geophys., 2016, 1-7. https://doi.org/10.1155/2016/4098275
  30. Sterligov, B., Cherkasov, S., Kapshtan, D., and Kurmaeva V., 2018, An experimental aeromagnetic survey using a rubidium vapor magnetometer attached to the rotary-wings unmanned aerial vehicle, First Break, 36(1), 39-45.
  31. Stoll, J. B., 2013, Unmanned aircraft systems for rapid near surface geophysical measurements, Int. Arch. Photogramm. Remote Sens. Spatial inf. Sci., XL-1/W2, 391-394, https://doi.org/10.5194/isprsarchives-XL-1-W2-391-2013.
  32. Tuck, L., 2019, Characterization and compensation of magnetic interference resulting from unmanned aircraft system, Ph.D. thesis, Carleton University.
  33. Tuck, L., Samson, C., Polowick, C., and Laliberte, J., 2019, Realtime compensation of magnetic data acquired by a single-rotor unmanned aircraft system, Geophys. Prospect., 67, 1637-1651. https://doi.org/10.1111/1365-2478.12800
  34. Walter, C. A., Braun, A., and Fotopoulos, G., 2019, Impact of three-dimensional attitude variations of an unmanned aerial vehicle magnetometry system on magnetic data quality, Geophys. Prospect., 67(2), 465-479. https://doi.org/10.1111/1365-2478.12727
  35. Walter, C. Braun, A., and Fotopoulos, G., 2020, High-resolution unmanned aerial vehicle aeromagnetic surveys for mineral exploration targets, Geophys. Prospect., 68, 334-349. https://doi.org/10.1111/1365-2478.12914
  36. Wood, A., Cook, I., Doyle, B., Cunningham, M., and Samson, C., 2016, Experimental aeromagnetic survey using an unmanned air system, The Leading Edge, 35(3), 270-273. https://doi.org/10.1190/tle35030270.1