DOI QR코드

DOI QR Code

ZnO 나노 분말 코팅 기반 건식전사 그래핀 전극 제작 및 유기태양전지 응용

Partially Dry-Transferred Graphene Electrode with Zinc Oxide Nanopowder and Its Application on Organic Solar Cells

  • 조영수 (부산대학교 나노융합기술학과) ;
  • 우채영 (부산대학교 나노융합기술학과) ;
  • 홍순규 (부산대학교 나노융합기술학과) ;
  • 이형우 (부산대학교 나노융합기술학과)
  • Jo, Yeongsu (Department of Nano Fusion Technology, Pusan National University) ;
  • Woo, Chae Young (Department of Nano Fusion Technology, Pusan National University) ;
  • Hong, Soon Kyu (Department of Nano Fusion Technology, Pusan National University) ;
  • Lee, Hyung Woo (Department of Nano Fusion Technology, Pusan National University)
  • 투고 : 2020.07.16
  • 심사 : 2020.07.28
  • 발행 : 2020.08.28

초록

In this study, partially dry transfer is investigated to solve the problem of fully dry transfer. Partially dry transfer is a method in which multiple layers of graphene are dry-transferred over a wet-transferred graphene layer. At a wavelength of 550 nm, the transmittance of the partially dry-transferred graphene is seen to be about 3% higher for each layer than that of the fully dry-transferred graphene. Furthermore, the sheet resistance of the partially dry-transferred graphene is relatively lower than that of the fully dry-transferred graphene, with the minimum sheet resistance being 179 Ω/sq. In addition, the fully dry-transferred graphene is easily damaged during the solution process, so that the performance of the organic photovoltaics (OPV) does not occur. In contrast, the best efficiency achievable for OPV using the partially dry-transferred graphene is 2.37% for 4 layers.

키워드

참고문헌

  1. A. K. Geim: Science, 324 (2009) 1530. https://doi.org/10.1126/science.1158877
  2. Y. Zhu, S. Murail, W. Cai, X. Li, J. W. Suk and J. R. Potts: Adv. Mater., 22 (2010) 3906. https://doi.org/10.1002/adma.201001068
  3. B. K. Sharma and J. Ahn: Solid-State Electron., 89 (2013) 177. https://doi.org/10.1016/j.sse.2013.08.007
  4. H. Park, J. A. Rowehl, K. K. Kim, V. Bulovic and J. Kong: Nanotechnology, 21 (2010) 505204. https://doi.org/10.1088/0957-4484/21/50/505204
  5. Y. B. Tan and J. Lee: J. Mater. Chem. A, 1 (2013) 14814. https://doi.org/10.1039/c3ta12193c
  6. V. Tozzini and V. Pellegrini: Phys. Chem. Chem. Phys., 15 (2013) 80. https://doi.org/10.1039/C2CP42538F
  7. J. Kang, D. Shin, S. Bae and B. H. Hong; Nanoscale, 4 (2012) 5527. https://doi.org/10.1039/c2nr31317k
  8. A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu and J. Kong: J. Phys. Chem. C, 112 (2008) 17741. https://doi.org/10.1021/jp807380s
  9. S. Lee, Y. Jo, S. Hong, D. Kim and H. W. Lee: Current Optics and Photonics, 1 (2017) 7. https://doi.org/10.3807/COPP.2017.1.1.007
  10. X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. Ahn. Hacker: ACS Nano, 11 (2011) 9144.
  11. C. Woo, Y. Jo, S. Hong and H. W. Lee; J. Korean Powder Metall. Inst., 26 (2019) 11. https://doi.org/10.4150/KPMI.2019.26.1.11
  12. M. Song, D. S. You, K. Lim, S. Park, S. Jung, C. S. Kim, D. Kim, J. Kim, J. Park, Y. Kang, J. Heo, J. H. Park and J. Kang: Adv. Funct. Mater., 23 (2013) 4177. https://doi.org/10.1002/adfm.201202646
  13. S. Jung, S. Lee, M. Song, D. Kim, D. S. You, J. Kim, C. S. Kim, T. Kim, K. Kim, J. Kim and J. Kang: Adv. Energy Mater., 4 (2014) 1300474. https://doi.org/10.1002/aenm.201300474
  14. H. Park, P. R. Brown, V. Bulovic and J. Kong; Nano Lett., 12 (2012) 133. https://doi.org/10.1021/nl2029859
  15. S. Jung, J. Lee, J. Seo, U. Kim, Y. Choi and H. Park: Nano Lett., 18 (2018) 1337. https://doi.org/10.1021/acs.nanolett.7b05026
  16. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito: Nano Lett., 10 (2010) 751. https://doi.org/10.1021/nl904286r
  17. V. T. Nguyen, H. D. Le, V. C. Nguyen, T. T. T. Ngo, D. Q. Le, X. N. Nguyen and N. M. Phan: Adv. Nat. Sci., 4 (2013) 035012. https://doi.org/10.1088/2043-6262/4/3/035012
  18. A. W. Tsen, L. Brown, M. P. Levendorf, F. Ghahari, P. Y. Huang, R. W. Havener, C. S. Ruiz-Vargas, D. A. Muller, P. Kim and J. Park: Science, 336 (2012) 1143. https://doi.org/10.1126/science.1218948
  19. S. Yang, S. Choi, F. O. O. Ngome, K. Kim, S. Choi and C. Kim: Nano Lett., 19 (2019) 3590. https://doi.org/10.1021/acs.nanolett.9b00555