DOI QR코드

DOI QR Code

Postal Dosimetry Audits for the Domestic Medical Linear Accelerator

  • Kim, Kum Bae (Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences) ;
  • Choi, Sang Hyoun (Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences)
  • Received : 2020.05.19
  • Accepted : 2020.05.27
  • Published : 2020.06.30

Abstract

Purpose: The objective of this study is to perform Postal dosimetry audits for medical linear accelerators in radiation therapy institutions using glass dosimeters and Gafchromic film reading systems and postal dosimetry audit procedures, and to evaluate radiation therapy doses and mechanical accuracy in medical institutions. Methods: Photon output measured and analyzed using a standard phantom for measuring photon output dose using a glass dosimeter for medical linear accelerators. Mechanical accuracy was measured and analyzed using software for film measurement. Results: Measurement and analysis of photon beam output dose using a standard phantom glass dosimeter for photon beam output dose measurement was completed. All tolerance doses were within 5%. Mechanical accuracy measurement and analysis using a standard phantom for verifying the mechanical accuracy of linear accelerator (LINAC) using a Gafchromic film were completed, and all results were shown within tolerances (2 mm or less). Conclusions: In this study, Postal dosimetry audits were performed on the output dose and mechanical accuracy of photon beams (207 beams) for 106 LINACs from 48 institutions. As a result of corrective action and re-execution, it was confirmed that all engines met the acceptable standard within 2 mm in the linear accelerator.

Keywords

References

  1. Guerrero Urbano MT, Nutting CM. Clinical use of intensitymodulated radiotherapy: part I. Br J Radiol. 2004;77:88-96. https://doi.org/10.1259/bjr/84246820
  2. Syed YA, Patel-Yadav AK, Rivers C, Singh AK. Stereotactic radiotherapy for prostate cancer: a review and future directions. World J Clin Oncol. 2017;8:389-397. https://doi.org/10.5306/wjco.v8.i5.389
  3. Chin S, Eccles CL, McWilliam A, Chuter R, Walker E, Whitehurst P, et al. Magnetic resonance-guided radiation therapy: a review. J Med Imaging Radiat Oncol. 2020;64:163-177. https://doi.org/10.1111/1754-9485.12968
  4. Glide-Hurst CK, Chetty IJ. Improving radiotherapy planning, delivery accuracy, and normal tissue sparing using cutting edge technologies. J Thorac Dis. 2014;6:303-318.
  5. Mahboubi H, Sahyouni R, Moshtaghi O, Tadokoro K, Ghavami Y, Ziai K, et al. CyberKnife for treatment of vestibular schwannoma: a meta-analysis. Otolaryngol Head Neck Surg. 2017;157:7-15. https://doi.org/10.1177/0194599817695805
  6. Saw CB, Katz L, Gillette C, Koutcher L. 3D treatment planning on helical tomotherapy delivery system. Med Dosim. 2018;43:159-167. https://doi.org/10.1016/j.meddos.2018.02.012
  7. Aboukais R, Bonne NX, Touzet G, Vincent C, Reyns N, Lejeune JP. Progression of vestibular schawnnoma after GammaKnife radiosurgery: a challenge for microsurgical resection. Clin Neurol Neurosurg. 2018;168:77-82. https://doi.org/10.1016/j.clineuro.2018.03.006
  8. Verellen D, Depuydt T, Gevaert T, Linthout N, Tournel K, Duchateau M, et al. Gating and tracking, 4D in thoracic tumours. Cancer Radiother. 2010;14:446-454. https://doi.org/10.1016/j.canrad.2010.06.002
  9. Ellefson ST, Culberson WS, Bednarz BP, DeWerd LA, Bayouth JE. An analysis of the ArcCHECK-MR diode array's performance for ViewRay quality assurance. J Appl Clin Med Phys. 2017;18:161-171. https://doi.org/10.1002/acm2.12107
  10. Blanchard P, Gunn GB, Lin A, Foote RL, Lee NY, Frank SJ. Proton therapy for head and neck cancers. Semin Radiat Oncol. 2018;28:53-63. https://doi.org/10.1016/j.semradonc.2017.08.004
  11. Izewska J, Andreo P, Vatnitsky S, Shortt KR. The IAEA/WHO TLD postal dose quality audits for radiotherapy: a perspective of dosimetry practices at hospitals in developing countries. Radiother Oncol. 2003;69:91-97. https://doi.org/10.1016/S0167-8140(03)00245-7
  12. Ferreira IH, Dutreix A, Bridier A, Chavaudra J, Svensson H. The ESTRO-QUALity assurance network (EQUAL). Radiother Oncol. 2000;55:273-284. https://doi.org/10.1016/S0167-8140(99)00101-2
  13. Sakhalkar H, Sterling D, Adamovics J, Ibbott G, Oldham M. Investigating the feasibility of 3D dosimetry in the RPC IMRT H&N phantom. J Phys Conf Ser. 2009;164:12058. https://doi.org/10.1088/1742-6596/164/1/012058
  14. Kim G, Oh H, Pyun W, Lee H. A quality assurance program for radiotherapy centers in Korea. Paper presented at: 22nd Annual International Conference of the IEEE; 2000 Jul 23-28; Chicago, USA. p. 1246-1249.
  15. Rah JE, Oh DH, Kim JW, Kim DH, Suh TS, Ji YH, et al. Feasibility study of glass dosimeter for in vivo measurement: dosimetric characterization and clinical application in proton beams. Int J Radiat Oncol Biol Phys. 2012;84:e251-e256. https://doi.org/10.1016/j.ijrobp.2012.03.054
  16. Robatjazi M, Mahdavi SR, Takavr A, Baghani HR. Application of Gafchromic EBT2 film for intraoperative radiation therapy quality assurance. Phys Med. 2015;31:314-319. https://doi.org/10.1016/j.ejmp.2015.01.020
  17. Huang JY, Pulliam KB, McKenzie EM, Followill DS, Kry SF. Effects of spatial resolution and noise on gamma analysis for IMRT QA. J Appl Clin Med Phys. 2014;15:4690.