DOI QR코드

DOI QR Code

2008년부터 2019년까지 수행된 국제공동연구 DECOVALEX 소개

Introduction of International Cooperation Project, DECOVALEX from 2008 to 2019

  • 투고 : 2020.08.14
  • 심사 : 2020.08.21
  • 발행 : 2020.08.31

초록

열-수리-역학-화학적 복합거동의 영향은 고준위방사성폐기물 심층 처분시스템의 성능평가 및 안전성 평가 측면에서 중요하기 때문에 이를 분석하고 예측하기 위한 해석모델과 수치해석 기법이 필요하다. 하지만, 장기간에 걸쳐 발생하는 열-수리-역학-화학적 복합거동에 관련된 다양한 현상들이 비선형적 거동을 보이고 그 구성방정식들의 상관관계가 명확하지 않기 때문에 이를 정확하게 해석하고 예측할 수 있는 수치모델과 모델링 기법을 개발하는 것은 매우 어렵다. 뿐만 아니라, 개발된 수치모델과 모델링 기법을 검증하기 위해서는 오랜 시간동안 수행되어야 하는 고비용의 실험실 시험과 현장시험이 필요하기 때문에 열-수리-역학-화학적 복합거동 분석과 예측을 위한 수치모델과 모델링 기법의 개발뿐만이 아니라 검증 역시 쉽지 않다. 이러한 문제를 해결하여 효과적인 수치모델 및 해석기법 개발과 실험실 시험 및 현장시험 데이터를 활용한 검증을 수행하기 위해 국제공동연구 DECOVALEX(DEvelopment of COupled models and their VALidation against EXperiment) 프로젝트가 1992년부터 시작되었다. 한국의 경우, 한국원자력연구원이 2008년부터 DECOVALEX-2011, DECOVALEX-2015, 그리고 DECOVALEX-2019에 참여하였다. 본 기술 보고에서는 지난 3단계의 DECOVALEX 프로젝트에서 수행된 모든 과제의 주요 내용을 국내 암반 및 지반공학자들에게 소개하였다.

An effect of coupled thermo-hydro-mechanical and chemical (THMC) behavior is an essential part of the performance and safety assessment of geological disposal systems for high-level radioactive waste and spent nuclear fuel. Furthermore, numerical models and modeling techniques are necessary to analyze and predict the coupled THMC behavior in the disposal systems. However, phenomena associated with the coupled THMC behavior are nonlinear, and the constitutive relationships between them are not well known. Therefore, it is challenging to develop numerical models and modeling techniques to analyze and predict the coupled THMC behavior in the geological disposal systems. It is also difficult to verify and validate the development of the models and techniques because it requires expensive laboratory tests and in-situ experiments that need to be performed for a long time. DECOVALEX was initiated in 1992 to efficiently develop numerical models and modeling techniques and validate the developed models and techniques against the lab and in-situ experiments. In Korea, Korea Atomic Energy Research Institute has participated in DECOVALEX-2011, DECOVALEX-2015, and DECOVALEX-2019 since 2008. In this study, all tasks in the three DECOVALEX projects were introduced to the researcher in the field of rock mechanics and geotechnical engineering in Korea.

키워드

참고문헌

  1. Andersson, C., 2012, DECOVALEX-2011 Project: Final report of Task B. Modelling an in situ spalling experiment in hard rock, Royal Institute of Technology, Stockholm, Sweden.
  2. Beaucaire, C., E. Tertre, E. Ferrage, B. Grenut, S. Pronier and B. Made, 2012, A thermodynamic model for the prediction of pore water composition of clayey rock at 25 and 80C d comparison with results from hydrothermal alteration experiments. Chemical Geology, 334, 62-76. https://doi.org/10.1016/j.chemgeo.2012.09.040
  3. Berg, H.P. and P. Brennecke, 2013, Management of nuclear-related research and development (R&D), in: Devgun, J. (Ed.), Managing Nuclear Projects: A Comprehensive Management Resource. Woodhead Publishing Limited, 152-174.
  4. Birkholzer, J., J. Rutqvist, E. Sonnenthal and D. Barr, 2007, DECOVALEX-THMC Project: Task D. Long-Term Permeability/Porosity Changes in the EDZ and Near Field due to THM and THC Processes in Volcanic and Crystalline-Bentonite Systems. Phase 1 Report. SKI Technical Report 2007-10, Swedish Nuclear Power Inspectorate, Stockholm, Sweden.
  5. Birkholzer, J.T., C.-F. Tsang, A.E. Bond, J.A. Hudson, L. Lanru and O. Stephansson, 2019, 25 years of DECOVALEX - Scientific advances and lessons learned from an international research collaboration in coupled subsurface process, International Journal of Rock Mechanics and Mining Sciences, 122, 103995. https://doi.org/10.1016/j.ijrmms.2019.03.015
  6. Bond, A., 2016, DECOVALEX-2015 Project: Task C1 Final Report, Royal Institute of Technology, Stockholm, Sweden.
  7. Davis J.P. and D.K. Davis, 1999, Stress-dependent permeability: characterization and modeling. Society of Petroleum Engineers, SPE Paper no. 56813.
  8. ENRESA, 2000, FEBEX Project: Full-scale Engineered Barriers Experiment for a Deep Geological Repository for High Level Radioactive Waste in Crystalline Host Rock. Final Report, ENRESA, Madrid, Spain.
  9. Garitte, B., 2012, DECOVALEX-2011 Project: Final report of Task A. Analysis of hydro-mechanical processes in a ventilated tunnel in an argillaceous rock on the basis of different modelling approaches, Royal Institute of Technology, Stockholm, Sweden.
  10. Garrite, B., 2016, DECOVALEX-2015 Project: Task B1 Final Report, Royal Institute of Technology, Stockholm, Sweden.
  11. Garitte, B., A. Bond, A. Millard, C. Zhang, C. Mcdermott, S. Nakama and A. Gens, 2013, Analysis of hydro-mechanical processes in a ventilated tunnel in an argillaceous rock on the basis of different modelling approaches, Journal of Rock Mechanics and Geotechnical Engineering, 5(1), 1-17. https://doi.org/10.1016/j.jrmge.2012.09.001
  12. Gaus, I., B. Garitte, R. Senger, A. Gens, R. Vasconcelos, J.L. Garcia-Sineriz, T. Trick, K. Wiezorek, O. Czaikowski, K. Schuster, J. C. Mayor, M. Velasco, U. Kuhlmann and M.V. Villar, 2014, The HE-E experiment: lay-out, Interpretation and THM modelling, Arbeitsbereicht NAB 14-53.
  13. Gens, A., 2020, DECOVALEX-2019 Project: Task D Final Report.
  14. Graupner, B., J. Rutqvist and Y. Guglielmi, 2020, DECOVALEX-2019 Project: Task B Final Report.
  15. Guglielmi, Y., J. Birkholzer, J. Rutqvist, P. Jeanne and C. Nussbaum, 2017, Can Fault Leakage Occur Before or Without Reactivation? Results from an in Situ Fault Reactivation Experiment at Mont Terri, Energy Procedia, Volume 114, Pages 3167-3174, ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2017.03.1445.
  16. Hokr, M., A, Balvin, H. Shao, H. Kunz W.P. Gardner and Y. Wang, 2016, DECOVALEX-2015 Project: Task C2 Final Report, Royal Institute of Technology, Stockholm, Sweden.
  17. Hudson, J.A. and L. Jing, 2012a, DECOVALEX-2011 Project: Executive summary, Royal Institute of Technology, Stockholm, Sweden.
  18. Hudson, J.A. and L. Jing, 2012b, DECOVALEX-2011 Project: Final report of Task C. Assessment of coupled THMC processes in single fractures and fractured rocks, Royal Institute of Technology, Stockholm, Sweden.
  19. Iwatsuki, T., 2019, DECOVALEX-2019 Project: Task C Final Report.
  20. Jing, L., J.A. Hudson and J. Birkholzer, 2016, DECOVALEX-2015 Project: Executive summary, Royal Institute of Technology, Stockholm, Sweden.
  21. Kwon, S., W.-J. Cho and J.-W. Choi, 2007, Status of the International Cooperation Project, DECOVALEX for THM Coupling Analysis, Journal of the Korean Radioactive Waste Society, 5(4), 323-338.
  22. Lee, C., J. Lee, S. Park, S. Kwon, W.-J. Cho and G.Y. Kim, 2020a, Numerical analysis of coupled thermo-hydro-mechanical behavior in single- and multi-layer repository concepts for high-level radioactive waste disposal, Tunnelling and Underground Space Technology, 103(103452).
  23. Lee, C., T. Kim, G.-Y. Kim and J.-S. Kim, 2020b, Introduction of 28 years of International Cooperation Project, DECOVALEX, KAERI/AR-1286/2020, Korea Atomic Energy Research Institute.
  24. Lee, J., 2014. Implicit and Explicit Fracture Shear Slip Analysis for Geological Storage of Carbon Dioxide and Nuclear Waste. Ph.D. Thesis, Seoul National University, Korea.
  25. Lee, J., C. Lee and G.Y. Kim, 2019, Numerical modelling of one-dimensional gas injection experiment using mechanical damage model: DECOVALEX-2019 Task A Stage 1A, Tunnel & Underground Space, 29(4), 262-279.
  26. Leverett, M.C., 1941, Capillary behavior in porous media. Trans, AIME142, 341-358.
  27. Mayor, J.C., J.L. Garcia-Sineriz, E. Alonso, H.J. Alheid and P. Blumbling, 2005, Engineered barrier emplacement in Opalinus Clay for the disposal of radioactive waste in underground repositories (No. ENRESA-02/05), Empresa Nacional de Residuos.
  28. Marschall, P., S.T. Horseman and T. Gimmi, 2005, Characterisation of gas transport properties of the Opalinus Clay, a potential host rock formation for radioactive waste disposal in Oil & Gas Science and Technology - Revue de l'Institute Frances Petrole. 60, 121-139. DOI: 10.2516/ogst:2005008.
  29. Meier, T. and T. Backers, 2020, DECOVALEX-2019 Project: Task G Final Report.
  30. Millard, A., N. Mokni and J.D. Barnichon, 2016, DECOVALEX-2015 Project: Task A Final Report, Royal Institute of Technology, Stockholm, Sweden.
  31. Min, K.-B., J. Rutqvist, C.-F. Tsang and L. Jing, 2004, Stress-dependent permeability of fractured rock masses: a numerical study. Int. J. Rock Mech. Mining Sci. 41, 1191-1210. https://doi.org/10.1016/j.ijrmms.2004.05.005
  32. NEA, 2013, Nuclear Energy Agency. NEA No. 78122 Underground Research Laboratories. vol. 2. Radioactive Waste Management NEA/RWM/R.
  33. Park, J. W., Guglielmi, Y., Graupner, B., Rutqvist, J., Kim, T., Park, E. S., & Lee, C. (2020). Modeling of fluid injection-induced fault reactivation using coupled fluid flow and mechanical interface model. International Journal of Rock Mechanics and Mining Sciences, 132, 104373. https://doi.org/10.1016/j.ijrmms.2020.104373
  34. Plua, C., M. Vitel, D.M. Seyedi and G. Armand, 2019, DECOVALEX-2019 Project: Task E Final Report.
  35. Roedder, E., 1984, The fluids in salt, American Mineralogist, 69, 413-439.
  36. Rutqvist J, Graupner B, Guglielmi Y, Kim T, Massmann J, Nguyen TS, Park JW, Shiu, W, Urpi L, Yoon JS, Ziefle G, Birkholzer J. (2020)An international model comparison study of controlled fault activation experiments in argillaceous claystone at the Mont Terri Laboratory. Int J Rock Mech Min Sci. (under review, submission no: IJRMMS_2020_494).
  37. SKB, 2010, Aspo Hard Rock Laboratory Planning Report for 2010, International Progress Report IPR-10-06. Stockholm, Sweden: Swedish Nuclear Fuel and Waste Management.
  38. Sugita, Y., S. Kwon, C. Lee, J. Massmann, Y., P.-Z. Pan and J. Rutqvist, 2016, DECOVALEX-2015 Project: Task B2 Final Report, Royal Institute of Technology, Stockholm, Sweden.
  39. Tamayo-Mas, E. and J.F. Harrington, 2020, DECOVALEX-2019 Project: Task A Final Report.
  40. Tsang, C.-F., O. Stephansson, L. Jing and F. Kautsky, 2009, DECOVALEX project: from 1992 to 2007, Environ. Geol. 57, 1221-1237. https://doi.org/10.1007/s00254-008-1625-1
  41. USNRC, 2011, Coupled process workshop report, U.S. Nuclear Regulatory Commission, NRC-02-07-006, 76pp.
  42. Villar, M.V., P.L. Martin, R. Gomez-Espina, F.J. Romero and J.M. Barcala, 2012, THM cells for the HE-E test: setup and first results. PEBS Report D2.2-7.1. CIEMAT Technical Report CIEMAT/DMA/2G210/02/2012. Madrid, 34 pages, Ciemat, Madrid & European Commission, Brussels
  43. Wileveau, Y. and T. Rothfuchs, 2007, THM behaviour of host rock: (HE-D experiment): Study of thermal effects on Opalinus Clay, Mont Terri Project, Technical report 2006-01, August 2007.
  44. Yasuhara, H., A. Polak, Y. Mitani, A. Grader, P. Halleck and D. Elsworth, 2006, Evolution of fracture permeability through fluid-rock reaction under hydrothermal conditions, Earth and Planetary Science Letters, 2006(244),186-200.
  45. Yasuhara, H., N. Kinoshita, H. Ohfuji, D.S. Lee, S. Nakashima and K. Kishida, 2011, Temporal alteration of fracture permeability in granite under hydrothermal conditions and its interpretation by coupled chemo-mechanical model, Applied Geochemistry, 2011(26), 2074-2088.
  46. Zheng, L., J. Rutqvist, J.T. Birkholzer and H.H. Liu, 2015, On the impact of temperatures up to $200^{\circ}C$ in clay repositories with bentonite engineer barrier systems: A study with coupled thermal, hydrological, chemical, and mechanical modeling, Engineering Geology, 197, 278-295. https://doi.org/10.1016/j.enggeo.2015.08.026
  47. Zheng, L., J. Rutqvist, H. Xu and J.T. Birkholzer, 2017, Coupled THMC models for bentonite in an argillite repository for nuclear waste: Illitization and its effect on swelling stress, Engineering Geology, 230, 118-129. https://doi.org/10.1016/j.enggeo.2017.10.002