DOI QR코드

DOI QR Code

Runge-Kutta method for flow of dusty fluid along exponentially stretching cylinder

  • Iqbal, Waheed (Department of Mathematics, Govt. College University Faisalabad) ;
  • Jalil, Mudassar (Department of Mathematics, COMSATS Institute of Information Technology) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Ayed, Hamdi (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Naeem, Muhammad N. (Department of Mathematics, Govt. College University Faisalabad) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Bouzgarrou, Souhail Mohamed (Department of Civil Engineering, Faculty of Engineering, Jazan University) ;
  • Mahmoud, S.R. (GRC Department, Faculty of Applied studies, King Abdulaziz University) ;
  • Ghandourah, E. (Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University) ;
  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Tounsi, Abdelouahed (Department of Technology Civil Engineering, Materials and Hydrology Laboratory, University of Sidi Bel Abbes)
  • 투고 : 2020.05.25
  • 심사 : 2020.08.11
  • 발행 : 2020.09.10

초록

The present manuscript focuses on the flow and heat transfer of the dusty fluid along exponentially stretching cylinder. Enormous attempts are made for fluid flow along cylinder but the study of fluid behavior along exponentially stretching cylinder is discussed lately. Using appropriate transformations, the governing partial differential equations are converted to non-dimensional ordinary differential equations. The transformed equations are solved numerically using Shooting technique with Runge-Kutta method. The influence of the physical parameters on the velocity and temperature profiles as well as the skin fraction coefficient and the local Nusselt number are examined in detail. The essential observations are as the fluid velocity decreases but temperature grows with rise in particle interaction parameter, and both the fluid velocity and temperature fall with increase in mass concentration parameter, Reynold number, Particle interaction parameter for temperature and the Prandtl number.

키워드

과제정보

The author(s) received no financial support for the research, authorship, and/or publication of this article.

참고문헌

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  2. Agranat, V.M. (1988), Effect of pressure gradient on friction and heat transfer in a dusty boundary layer", Fluid Dyn., 23, 729-732. http://dx.doi.org/10.1007/BF02614150.
  3. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421 https://doi.org/10.12989/scs.2011.11.5.403.
  4. Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Design, 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  5. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  6. Baaskaran, N., Ponappa, K. and Shankar, S. (2018), "Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load", Steel Compos. Struct., 28(2), 179-194. https://doi.org/10.12989/scs.2018.28.2.179.
  7. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  8. Chakrabarti, K.M. (1974)), "Note on Boundary layer in a dusty gas", American Inst. Aeronautics and Astronautics J., 12, 1136-1137. http://dx.doi.org/10.2514/3.49427.
  9. Chen, J., Zhuang, Y., Fang, H., Liu, W., Zhu, L. and Fan, Z. (2019a), "Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading", Steel Compos. Struct., 31(2), 133-148. https://doi.org/10.12989/scs.2019.31.2.133.
  10. Chen, W., Ji, C., Alam, M.M. and Xu, D. (2019b), "Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow", Wind Struct., 29(1), 43-53. https://doi.org/10.12989/was.2019.29.1.043.
  11. Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B: Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030
  12. Derakhshandeh1a, J.F. and Alam, M.M. (2020), "Reynolds number effect on the flow past two tandem cylinders", Wind Struct., 30(5), 475-483. https://doi.org/10.12989/was.2020.30.5.475.
  13. Iqbal, W., Naeem, M.N. and Jalil, M. (2019), "Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder", AIP Adv., 9(5), 055118, http://dx.doi.org/10.1063/1.5092737.
  14. Ishak, A. and Nazar, R. (2009), "Laminar boundary layer flow along a stretching cylinder", Eur. J. Sci. Res., 36(1), 22-29.
  15. Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/ blowing effect on flow and heat transfer due to stretching cylinder", App. Math. Mod., 32, 2059-2066. http://dx.doi.org/10.1016/j.apm.2007.06.036.
  16. Karami, B, Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  17. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
  18. Khan, M. and Malik, R. (2015), "Forced convective heat transfer to Sisko fluid flow past a stretching cylinder", AIP Adv., 5(12), 127202. http://dx.doi.org/10.1063/1.4937346.
  19. Konch, J. and Hazarika, G.C. (2017), "Unsteady Hydro magnetic flow of dusty fluid over a stretching cylinder with variable viscosity and thermal conductivity", Int. J. Adv. Sci. Tech., 99, 57-70. http://dx.doi.org/10.14257/ijast.2017.99.05.
  20. lmtiaz, M., Hayat, T. and Alsaedi, A. (2016), "Mixed convection flow of Casson nanofluid over a stretching cylinder with convective boundary conditions", Adv. Power Tech., 27(5), 2245-2256. https://doi.org/10.1016.j.apt.2016.08.011. https://doi.org/10.1016/j.apt.2016.08.011
  21. Loghman, A., Faegh, R.K. and Arefi, M. (2018), "Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory", Steel Compos. Struct., 26(5), 533-547. https://doi.org/10.12989/scs.2018.26.5.533.
  22. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  23. Mahdy, A. (2015), "Heat transfer and flow of a Casson fluid due to a stretching cylinder with the soret and dufour effects", J. Eng. Phys. Thermophy., 88(4), 928-936. https://doi.org/10.1007/s10891-015-1267-6.
  24. Malik, M.Y., Hussain, A., Salahuddin, T., Awais, M., Bilal, S. and Khan, F. (2016), "Flow of Sisko fluid over a stretching cylinder and heat transfer with viscous dissipation and variable thermal conductivity: A numerical study", AIP Adv., 6(4), 045118. https://doi.org/10.1063/1.4948458.
  25. Malik, M.Y., Naseer, M., Nadeem, S. and Rehman, A. (2013), "The boundary layer flow of Casson nanofluid over an exponentially stretching cylinder", Appl. Nanosci., 4, 869-873. https://doi.org/10.1007/s 13204-013-0267-0.
  26. Moghaddam, S.H. and Masoodi, A.R. (2019), "Elastoplastic nonlinear behavior of planar steel gabled frame", Adv. Comput. Des., 4(4), 397-413. https://doi.org/10.12989/acd.2019.4.4.397
  27. Naseer, M., Malik, M.Y., Nadeem, S. and Rehman, A. (2014), "The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder", Alexandria Eng. J., 53, 747-750. https://doi.org/10.1016/j.aej.2014.05.001.
  28. Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2020), "Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model", Steel Compos. Struct., 35(1), 77-92. https://doi.org/10.12989/scs.2020.35.1.077.
  29. Rasekh, A., Ganji, D.D., Tavakoli, S., Ehsani, H. and Naeejee, S. (2014), "MHD flow and heat transfer of dusty fluid over a stretching hollow cylinder with a convective boundary conditions", Heat Trans. Asian Res., 43(3), 221-232. https://doi.org/10.1002/htj.21073.
  30. Rebhi, A.D. (2010), "On boundary layer flow of dusty gas from a horizontal circular cylinder", Braz. J. Chem. Eng., 27(4), 653-662. http://dx.doi.org/10.1590/S0104-66322010000400017.
  31. Rehman, A. (2015), "Boundary layer flow and heat transfer of Micropolar Fluid over a vertical exponentially stretching cylinder", Appl. Comp. Math., 4(6), 424-430. http://dx.doi.org/10.11648/j.acm.20150406.15.
  32. Saffman, P.G. (1962), "On the stability of laminar flow of a dusty gas", J. Fluid Mech., 13, 120-128. https://doi.org/10.1017/S0022112062000555.
  33. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  34. Salahuddin, T., Malik, M.Y., Hussain, A., Awais, M. and Bilal, S. (2017), "Mixed convection boundary layer flow of Williamson fluid with slip conditions over a stretching cylinder by using Keller-box method", Int. J. Nonlinear Sci. Numer. Simul., 18(1), 9-17. https://doi.org/10.1515/ijnsns.2015.0090.
  35. Shadravan, S., Ramseyer, C.C. and Floyd, R.W. (2019), "Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load", Adv. Comput. Des., 4(3), 251-272. https://doi.org/10.12989/acd.2019.4.3.251.
  36. Sharma, N. and Panda, S.K. (2020a), "Multiphysical numerical (FE-BE) solution of sound radiation responses of laminated sandwich shell panel including curvature effect", Comput. Math. Appl., 80(5), 1221-1239. https://doi.org/10.1016/j.camwa.2020.06.010
  37. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017a), "Vibro-acoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory", Compos. Struct., 180, 116-129. https://doi.org/10.1016/j.compstruct.2017.08.012
  38. Sharma, N., Mahapatra, T. R. and Panda, S.K. (2017b), "Numerical study of vibro-acoustic responses of un-baffled multi-layered composite structure under various end conditions and experimental validation", Latin Am. J. Solids Struct., 14(8), 1547-1568. https://doi.org/10.1590/1679-78253830
  39. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017c), "Vibro-acoustic analysis of un-baffled curved composite panels with experimental validation", Struct. Eng. Mech., 64(1), 93-107. https://doi.org/10.12989/sem.2017.64.1.093.
  40. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018a), "Numerical analysis of acoustic radiation responses of shear deformable laminated composite shell panel in hygrothermal environment", J. Sound Vib., 431, 346-366. https://doi.org/10.1016/j.jsv.2018.06.007
  41. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018b), "Numerical analysis of acoustic radiation properties of laminated composite flat panel in thermal environment: a higher-order finite-boundary element approach", Proceedings of the Institution of Mechanical Engineers Part C: J. Mech. Eng. Sci., 232(18), 3235-3249. https://doi.org/10.1177/0954406217735866
  42. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018e), "Thermoacoustic behavior of laminated composite curved panels using higher-order finite-boundary element model", Int. J. Appl. Mech., 10(2), 1850017. https://doi.org/10.1142/S1758825118500175
  43. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019a), "Hygrothermal effect on vibroacoustic behaviour of higher-order sandwich panel structure with laminated composite face sheets", Eng. Struct., 197, 109355. https://doi.org/10.1016/j.engstruct.2019.109355
  44. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019b), "Vibroacoustic analysis of thermo-elastic laminated composite sandwich curved panel: a higher-order FEM-BEM approach", Int. J. Mech. Mater. Des., 15(2), 271-289 https://doi.org/10.1007/s10999-018-9426-5
  45. Sharma, N., Mahapatra, T.R., Panda, S.K. and Hirwani, C.K. (2018c), "Acoustic radiation and frequency response of higher-order shear deformable multilayered composite doubly curved shell panel-an experimental validation", Appl. Acoustics, 133, 38-51. https://doi.org/10.1016/j.apacoust.2017.12.013
  46. Sharma, N., Mahapatra, T.R., Panda, S.K. and Katariya, P. (2020b), "Thermo-acoustic analysis of higher-order shear deformable laminated composite sandwich flat panel", J. Sandw. Struct. Mater., 22(5), 1357-1385. https://doi.org/10.1177/1099636218784846
  47. Sharma, N., Mahapatra, T.R., Panda, S.K. and Mehar, K. (2018d), "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., 28(5), 629-639. https://doi.org/10.12989/scs.2018.28.5.629.
  48. Simsek M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
  49. Sofiyev, A.H., Yucel, K., Avcar, M. and Zerin, Z. (2006), "The dynamic stability of orthotropic cylindrical shells with non-homogenous material properties under axial compressive load varying as a parabolic function of time", J. Reinforced Plastics Compos., 25(18), 1877-1886. https://doi.org/10.1177/0731684406069914
  50. Wang, C.Y. (1988), "Fluid flow due to a stretching cylinder", Phy. Fluids, 31, 466-468. https://doi.org/10.1063/1.866827.
  51. Wang, C.Y. and Ng, C.O. (2011), "Slip flow due to a stretching cylinder", Int. J. Non-Lin. Mech., 46, 1191-1194. https: //doi.org/10.1016/j.ijnonlinmec.2011.05.04.