DOI QR코드

DOI QR Code

Performance of composite frame consisting of steel beams and concrete filled tubes under fire loading

  • Shariati, Mahdi (Institute of Research and Development, Duy Tan University) ;
  • Grayeli, Mohammad (Mazandaran University of Science and Technology) ;
  • Shariati, Ali (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University) ;
  • Naghipour, Morteza (Civil Engineering Faculty, Babol Noshirvani University of Technology)
  • Received : 2019.12.31
  • Accepted : 2020.07.29
  • Published : 2020.09.10

Abstract

In recent years, the composite columns have been widely used in the structures. These columns are mainly used to construct the structures with a large span and high floor height. Concrete filled tubes (CFTs) are a type of composite column, which are popular nowadays due to their numerous benefits. The purpose of this study is to investigate such frames at elevated temperatures. The method used in this research is based on section 2.2 of Eurocode 4. First, for the verification purpose, a comparison was made between the experimental results and the numerical model of the concrete filled tube. Then a composite frame was analyzed under fire temperature with different parameters. The results showed that the failure time decreased with increasing the friction of different models. Moreover, investigation of the concrete moisture content revealed that an increase in the concrete moisture content from 3% to 10% led to extended failure time for different models. For instance, in the second frame model, the failure time has increased up to 8%.

Keywords

References

  1. Abdollahzadeh, G. and Afaghi-Darabi, A. (2018a), "Effect of drywall and brick wall on fire behavior of concrete-filled steel tube column", Struct.Concrete, 19(3), 851-863. https://doi.org/10.1002/suco.201700054
  2. Abdollahzadeh, G., Yapang-Gharavi, S. and Hoseinali-Beygi, M. (2018b), "Combination of mechanical and informational modeling to predict hysteresis behavior of I beam-to-CFT column connection", Struct. Des. Tall Spec. Build., 27(3), e1420. https://doi.org/10.1002/tal.1420
  3. Arabnejad Khanouki, M.M., Ramli Sulong, N.H. and Shariati, M. (2010), "Investigation of seismic behaviour of composite structures with concrete filled square steel tubular (CFSST) column by push-over and time-history analyses", Proceedings of the 4th International Conference on Steel & Composite Structures.
  4. Arabnejad Khanouki, M.M., Ramli Sulong, N.H. and Shariati, M. (2011), "Behavior of through Beam Connections Composed of CFSST Columns and steel beams by finite element studying", Adv. Mater. Res., 168, 2329-2333 http://dx.doi.org/10.4028/www.scientific.net/AMR.168-170.2329.
  5. ASTM, A. (2001), "Standard methods of fire test of building construction and materials".
  6. Davoodnabi, S.M., Mirhosseini, S.M. and Shariati, M. (2019), "Behavior of steel-concrete composite beam using angle shear connectors at fire condition", Steel Compos. Struct., 30(2), 141-147 https://doi.org/10.12989/scs.2019.30.2.141.
  7. Ding, J. and Wang, Y. (2008), "Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire", J. Constr. Steel Res., 64(10), 1086-1102. https://doi.org/10.1016/j.jcsr.2007.09.014
  8. Elremaily, A. and Azizinamini, A. (2002), "Behavior and strength of circular concrete-filled tube columns", J. Constr. Steel Res., 58(12), 1567-1591. https://doi.org/10.1016/S0143-974X(02)00005-6
  9. EN, B. (2004), "1-1. Eurocode 2: Design of concrete structures- Part 1-1: General rules and rules for buildings", European Committee for Standardization (CEN).
  10. EN, C. (1994), "1-1, Eurocode 4: Design of composite steel and concrete structures", Part 1-1: General rules and rules for buildings2004.
  11. En, C. (2005), "1-2, Eurocode 3: Design of steel structures, Part 1.2: General rules-Structural fire design", Brussels, Belgium: Comite Europeen de Normalisation.
  12. Espinos, A., Romero, M.L. and Hospitaler, A. (2010), "Advanced model for predicting the fire response of concrete filled tubular columns", J. Constr. Steel Res., 66(8-9), 1030-1046. https://doi.org/10.1016/j.jcsr.2010.03.002
  13. Espinos, A., Romero, M.L., Portoles, J. and Hospitaler, A. (2014), "Ambient and fire behavior of eccentrically loaded elliptical slender concrete-filled tubular columns", J. Constr. Steel Res., 100, 97-107. https://doi.org/10.1016/j.jcsr.2014.04.025
  14. Hajjar, J.F. (2000), "Concrete-filled steel tube columns under earthquake loads", Progress in Structural Eng. Mater., 2(1), 72-81. https://doi.org/10.1002/(SICI)1528-2716(200001/03)2:1<72::AID-PSE9>3.0.CO;2-E
  15. Han, L.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  16. Han, L.H., Wang, W.D. and Zhao, X.L. (2008), "Behaviour of steel beam to concrete-filled SHS column frames: Finite element model and verifications", Eng. Struct., 30(6), 1647-1658. https://doi.org/10.1016/j.engstruct.2007.10.018
  17. Han, L.H. and Yang, Y.F. (2005), "Cyclic performance of concrete-filled steel CHS columns under flexural loading", J. Constr. Steel Res., 61(4), 423-452. https://doi.org/10.1016/j.jcsr.2004.10.004
  18. Han, L.H., Yao, G.H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin-Wall. Struct., 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008
  19. Han, L.H., Zhao, X.L. and Tao, Z. (2001), "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns", Steel Compos. Struct., 1(1), 51-74. https://doi.org/10.12989/scs.2001.1.1.051.
  20. Hong, S. and Varma, A.H. (2009), "Analytical modeling of the standard fire behavior of loaded CFT columns", J. Constr. Steel Res., 65(1), 54-69. https://doi.org/10.12989/scs.2009.65.1.054.
  21. Ismail, M., Shariati, M., Abdul Awal, A.S.M., Chiong, C.E., Sadeghipour Chahnasir, E., Porbar, A., Heydari, A. and khorami, M. (2018), "Strengthening of bolted shear joints in industrialized ferrocement construction", Steel Compos. Struct., 28(6), 681-690. https://doi.org/10.12989/scs.2018.28.6.681.
  22. Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N.T. and Khorami, M. (2019), "Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures", Eng. with Comput., 1-20.
  23. Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067.
  24. Kodur, V.K.R. and Lie, T.T. (1995), "Experimental studies on the fire resistance of circular hollow steel columns filled with steel-fibre-reinforced concrete", National Research Council Canada, Institute for Research in Construction.
  25. Lai, M. and Ho, J. (2014), "Behaviour of uni-axially loaded concrete-filled-steel-tube columns confined by external rings", Struct. Des. Tall Spec. Build., 23(6), 403-426. https://doi.org/10.1002/tal.1046
  26. Lam, D. and Williams, C.A. (2004), "Experimental study on concrete filled square hollow sections", Steel Compos. Struct., 4(2), 95-112. https://doi.org/10.12989/scs.2004.4.2.095.
  27. Lie, T. (1994), "Fire resistance of circular steel columns filled with bar-reinforced concrete", J. Struct. Eng., 120(5), 1489-1509. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:5(1489)
  28. Lie, T. and Denham, E. (1993), "Factors affecting the fire resistance of circular hollow steel columns filled with bar-reinforced concrete".
  29. Lie, T. and Stringer, D. (1994), "Calculation of the fire resistance of steel hollow structural section columns filled with plain concrete", Can. J. Civil Eng., 21(3), 382-385. https://doi.org/10.1139/l94-041
  30. Lie, T.T. and Chabot, M. (1990a), "Concrete filling: fire protection of hollow steel columns", Can. Consulting Engineer, 39-40.
  31. Lie, T.T. and Chabot, M. (1990b), "A method to predict the fire resistance of circular concrete filled hollow steel columns", J. Fire Protection Eng., 2(4), 111-124. https://doi.org/10.1177/104239159000200402
  32. Lie, T.T. and Irwin, R. (1990c), "Evaluation of the fire resistance of reinforced concrete columns with rectangular cross-sections",
  33. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T. and Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates", Steel Compos. Struct., 30(3), 271-280. http://dx.doi.org/10.12989/scs.2019.30.3.271.
  34. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M. and Petkovic, D. (2019), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intel. Manufact., 30(3), 1247-1257. https://doi.org/10.1007/s10845-017-1306-6
  35. Milovancevic, M., Marinovic, J.S., Nikolic, J., Kitic, A., Shariati, M., Trung, N.T., Wakil, K. and Khorami, M. (2019), "UML diagrams for dynamical monitoring of rail vehicles", Physica A: Stati. Mech. Appl., 121169.
  36. Naghipour, M., Yousofizinsaz, G. and Shariati, M. (2020), "Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines", Steel Compos. Struct., 34(3), 347-359. http://dx.doi.org/10.12989/scs.2020.34.3.347.
  37. Qiao, Q., Li, X., Cao, W. and Dong, H. (2018), "Seismic behavior of specially shaped concrete-filled steel tube columns with multiple cavities", Struct. Des. Tall Spec. Build., 27(12), e1485. https://doi.org/10.1002/tal.1485
  38. Romero, M.L., Espinos, A., Portoles, J., Hospitaler, A. and Ibanez, C. (2015), "Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire", Eng. Struct., 99, 536-545. https://doi.org/10.1016/j.engstruct.2015.05.026
  39. Sajedi, F. and Shariati, M. (2019), "Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping", Steel Compos. Struct., 30(5), 417-432. https://doi.org/10.12989/scs.2019.30.5.417.
  40. Shahabi, S., Ramli Sulong, N.H., Shariati, M., Mohammadhassani, M. and Shah, S. (2016), "Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire", Steel Compos. Struct., 20(3), 651-669. https://doi.org/10.12989/scs.2016.20.3.651.
  41. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational Lagrangian Multiplier Method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., 29(2), 243-256. https://doi.org/10.12989/scs.2018.29.2.243.
  42. Shariati, M., Mafipour, M.S., Haido, J.H., Yousif, S.T., Toghroli, A., Trung, N.T. and Shariati, A. (2020), "Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)", Steel Compos. Struct., 34(1), 155-170. https://doi.org/10.12989/scs.2020.34.1.155.
  43. Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N., Nguyen, H., Dou, J., Song, X. and Poi-Ngian, S. (2019a), "Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete", Appl. Sci., 9(24), 5534. https://doi.org/10.3390/app9245534
  44. Shariati, M., Mafipour, M.S., Mehrabi, P., Shariati, A., Toghroli, A., Trung, N.T. and Salih, M.N. (2020), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-019-00930-x.
  45. Shariati, M., Mafipour, M.S., Mehrabi, P., Zandi, Y., Dehghani, D., bahadori, A., Shariati, A., Trung, N.T., Salih, M.N. and Poi-Ngian, S. (2019b), "Application of extreme learning machine (ELM) and Genetic Programming (GP) to design steel-concrete composite floor systems at elevated temperatures", Steel Compos. Struct., 33(3), 319-332. https://doi.org/10.12989/scs.2019.33.3.319.
  46. Shariati, M., Rafiei, S., Zandi, Y., Fooladvand, R., Gharehaghaj, B., Shariat, A., Trung, N.T., Salih, M.N., Mehrabi, P. and Poi-Ngian, S. (2019c), "Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete", Adv. concrete construction 8(3), 225-237. https://doi.org/10.12989/acc.2019.8.3.225
  47. Shariati, M., Trung, N.-T., Wakil, K., Mehrabi, P., Safa, M. and Khorami, M. (2019d), "Moment-rotation estimation of steel rack connection using extreme learning machine", Steel Compos. Struct., 31(5), 427-435. https://doi.org/10.12989/scs.2019.31.5.427.
  48. Sinaei, H., Jumaat, M.Z. and Shariati, M. (2011), "Numerical investigation on exterior reinforced concrete Beam-Column joint strengthened by composite fiber reinforced polymer (CFRP)", Int. J. Phys. Sci., 6(28), 6572-6579.
  49. Standardization, E.C.f. (2004), "Design of concrete structures- Part 1-2: General rules-Structural fire design", EN 1992 Eurocode 2.
  50. Talebi, E., Korzen, M. and Hothan, S. (2018), "The performance of concrete filled steel tube columns under post-earthquake fires", J. Constr. Steel Res., 150, 115-128. https://doi.org/10.1016/j.jcsr.2018.07.013
  51. Tao, Z., Wang, Z.B. and Yu, Q. (2013), "Finite element modelling of concrete-filled steel stub columns under axial compression", J. Constr. Steel Res., 89, 121-131. https://doi.org/10.1016/j.jcsr.2013.07.001
  52. Trung, N.T., Shahgoli, A.F., Zandi, Y., Shariati, M., Wakil, K., Safa, M. and Khorami, M. (2019), "Moment-rotation prediction of precast beam-to-column connections using extreme learning machine", Struct. Eng. Mech., 70(5), 639-647. https://doi.org/10.12989/sem.2019.70.5.639.
  53. Twilt, L., Hass, R., Klingsch, W., Edwards, M. and Dutta, D. (1994), "Design guide for structural hollow section columns exposed to fire. CIDECT Design Guide No. 4", Koln: TUV-Verlag.
  54. Wang, F.C. and Han, L.H. (2018), "Analytical behavior of special-shaped CFST stub columns under axial compression", Thin-Wall. Struct., 129, 404-417. https://doi.org/10.1016/j.tws.2018.04.013
  55. Xie, Q., Sinaei, H., Shariati, M., Khorami, M., Mohamad, E.T. and Bui, D.T. (2019), "An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections", Steel Compos. Struct., 30(5), 433-441. https://doi.org/10.12989/scs.2019.30.5.433.
  56. Xu, C., Zhang, X., Haido, J.H., Mehrabi, P., Shariati, A., Mohamad, E.T., Nguyen, H. and Wakil, K. (2019), "Using genetic algorithms method for the paramount design of reinforced concrete structures", Struct. Eng. Mech., 71(5), 503-513. https://doi.org/10.12989/sem.2019.71.5.503.
  57. Ziaei-Nia, A., Shariati, M. and Salehabadi, E. (2018). "Dynamic mix design optimization of high-performance concrete", Steel Compos. Struct., 29(1), 67-75. https://doi.org/10.12989/scs.2018.29.1.067.

Cited by

  1. Influence of porosity and cement grade on concrete mechanical properties vol.10, pp.5, 2020, https://doi.org/10.12989/acc.2020.10.5.393
  2. Knowledge-Based Prediction of Load-Carrying Capacity of RC Flat Slab through Neural Network and FEM vol.2021, 2020, https://doi.org/10.1155/2021/4528945
  3. Experimental study on the effects of physical conditions on the interaction between debris flow and baffles vol.33, pp.5, 2020, https://doi.org/10.1063/5.0046670
  4. Optimization algorithms for composite beam as smart active control of structures using genetic algorithms vol.27, pp.6, 2020, https://doi.org/10.12989/sss.2021.27.6.1041
  5. Application of multi-hybrid metaheuristic algorithm on prediction of split-tensile strength of shear connectors vol.28, pp.2, 2020, https://doi.org/10.12989/sss.2021.28.2.167
  6. Analyzing shear strength of steel-concrete composite beam with angle connectors at elevated temperature using finite element method vol.40, pp.6, 2020, https://doi.org/10.12989/scs.2021.40.6.853