DOI QR코드

DOI QR Code

Load-slip curves of shear connection in composite structures: prediction based on ANNs

  • Guo, Kai (School of Civil Engineering, Qingdao University of Technology) ;
  • Yang, Guotao (School of Civil Engineering, Qingdao University of Technology)
  • 투고 : 2019.11.21
  • 심사 : 2020.07.31
  • 발행 : 2020.09.10

초록

The load-slip relationship of the shear connection is an important parameter in design and analysis of composite structures. In this paper, a load-slip curve prediction method of the shear connection based on the artificial neural networks (ANNs) is proposed. The factors which are significantly related to the structural and deformation performance of the connection are selected, and the shear stiffness of shear connections and the transverse coordinate slip value of the load-slip curve are taken as the input parameters of the network. Load values corresponding to the slip values are used as the output parameter. A twolayer hidden layer network with 15 nodes and 10 nodes is designed. The test data of two different forms of shear connections, the stud shear connection and the perforated shear connection with flange heads, are collected from the previous literatures, and the data of six specimens are selected as the two prediction data sets, while the data of other specimens are used to train the neural networks. Two trained networks are used to predict the load-slip curves of their corresponding prediction data sets, and the ratio method is used to study the proximity between the prediction loads and the test loads. Results show that the load-slip curves predicted by the networks agree well with the test curves.

키워드

과제정보

This research is sponsored by National Natural Science Foundation of China (No. 51808308 and No. 51978351) and State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, China (No. SLDRCE17-02). This support is gratefully acknowledged.

참고문헌

  1. Ahn, J.H., Kim, S.H. and Jeong, Y.J. (2008), "Shear behaviour of perfobond rib shear connection under static and cyclic loadings", Mag. Concrete Res., 60(5), 347-357. https://doi.org/10.1680/macr.2007.00046.
  2. Al-Shamiri, A.K., Kim, J.H., Yuan, T.F. and Yoon, Y.S. (2019), "Modeling the compressive strength of high-strength concrete: An extreme learning approach", Constr. Build. Mater., 208, 204-219. https://doi.org/10.1016/j.conbuildmat.2019.02.165.
  3. Bonilla, J., Bezerra, L.M. and Mirambell, E. (2019), "Resistance of stud shear connectors in composite beams using profiled steel sheeting", Eng. Struct., 187, 478-489. https://doi.org/10.1016/j.engstruct.2019.03.004.
  4. Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201.
  5. Chou, J.S. and Pham, A.D. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Constr. Build. Mater., 49, 554-563. https://doi.org/10.1016/j.conbuildmat.2 013.08.078.
  6. Chu, T.H.V., Bui, D.V., Le, V.P.N., Kim, I.T., Ahn, J.H. and Dao, D.K. (2016), "Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study", Steel Compos. Struct., 21(5), 1157-1182. https://doi.org/10.12989/scs.2016.21.5.1157.
  7. Ding, F.X., Yin, G.A., Wang, H.B., Wang, L.P. and Guo, Q. (2017), "Behavior of headed shear stud connectors subjected to cyclic loading", Steel Compos. Struct., 25(6), 705-716. https://doi.org/10.12989/scs.2017.25.6.705.
  8. Efstathiades, C., Baniotopoulos, C.C., Nazarko, P., Ziemianski, L. and Stavroulakis, G.E. (2007), "Application of neural networks for the structural health monitoring in curtain-wall systems", Eng. Struct., 29(12), 3475-3484 .https://doi.org/10.1016/j.engstruct.2007.08.017.
  9. Gu, J.C., Liu, D., Deng, W.Q. and Zhang, J.D. (2019), "Experimental study on the shear resistance of a comb-type perfobond rib shear connector", J. Constr. Steel Res., 158, 279-289. https://doi.org/10.1016/j.jcsr.2019.03.032.
  10. Hallmark, R., Collin, P. and Hicks, S.J. (2019), "Post-installed shear connectors: Fatigue push-out tests of coiled spring pins", J. Constr. Steel Res., 153, 298-309. https://doi.org/10.1016/j.jcsr.2018.10.017.
  11. Hammoudi, A., Moussaceb, K., Belebchouche, C. and Dahmoune, F. (2019), "Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates", Constr. Build. Mater., 209, 425-436. https://doi.org/10.1016/j.conbuildmat.2019.03.119.
  12. Hawkins, N.M. (1973), "The Strength of Stud Shear Connectors", Civil Engineering Transactions, CE15 46-52.
  13. He, S.H., Fang, Z., Fang, Y.W., Liu, M., Liu, L.Y. and Mosallam, A.S. (2016), "Experimental study on perfobond strip connector in steel-concrete joints of hybrid bridges", J. Constr. Steel Res., 118, 169-179. https://doi.org/10.1016/j.jcsr.2015.11.009.
  14. He, Y.L., Wu, X.D., Xiang, Y.Q., Wang, Y.H., Liu, L.S. and He, Z.H. (2017), "Mechanical behavior of stud shear connectors embedded in HFRC", Steel Compos. Struct., 24(2), 177-189. https://doi.org/10.12989/scs.2017.24.2.177.
  15. Hicks and Smith (2014), "Stud shear connectors in composite beams that support slabs with profiled steel sheeting", Struct. Eng. Int., 24(2). https://doi.org/10.2749/101686614X13830790993122.
  16. Johnson, R. and May, I. (1975), "Partial-interaction design of composite beams", The Structural Engineer, 53(8), 305-311.
  17. Karakoc, M.B., Demirboga, R., Turkmen, I. and Can, I. (2011), "Modeling with ANN and effect of pumice aggregate and air entrainment on the freeze-thaw durabilities of HSC", Constr. Build. Mater., 25(11), 4241-4249. https://doi.org/10.1016/j.conbuildmat.2011.04.068.
  18. Kim, K.S., Han, O., Gombosuren, M. and Kim, S.H. (2019), "Numerical simulation of Y-type perfobond rib shear connectors using finite element analysis", Steel Compos. Struct., 31(1), 53-67. https://doi.org/10.12989/scs.2019.31.1.053.
  19. Lefik, M. (2013), "Some aspects of application of artificial neural network for numerical modeling in civil engineering", Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(1), 39-50. https://doi.org/10.2478/bpasts-2013-0003.
  20. Liu, Y.Q., Zeng, M.G. and Chen, A.R. (2003), "Application and research of shear connection in bridge structures", J. Harbin Inst. Technol., 35(1), 271-275.
  21. Lloyd, R.M. and Wright, H.D. (1990), "Shear connection between composite slabs and steel beams", J. Constr. Steel Res., 15(4), 255-285. https://doi.org/10.1016/0143-974x(90)90050-Q.
  22. Mashhadban, H., Kutanaei, S.S. and Sayarinejad, M.A. (2016), "Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network", Constr. Build. Mater., 119, 277-287. https://doi.org/10.1016/j.conbuildmat.2016.05.034.
  23. Nasrollahi, S., Maleki, S., Shariati, M., Marto, A. and Khorami, M. (2018), "Investigation of pipe shear connectors using push out test", Steel Compos. Struct., 27(5), 537-543. https://doi.org/10.1016/S0092-8240(05)80006-0.
  24. Nguyen, G.B. and Machacek, J. (2016), "Effect of local small diameter stud connectors on behavior of partially encased composite beams", Steel Compos. Struct., 20(2), 251-266. https://doi.org/10.12989/scs.2016.20.2.251.
  25. Nie, J., Cai, C.S. and Wang, T. (2005), "Stiffness and capacity of steel-concrete composite beams with profiled sheeting", Eng Struct., 27(7).
  26. Ning, C.-L., Wang, L. and Du, W. (2019), "A practical approach to predict the hysteresis loop of reinforced concrete columns failing in different modes", Constr. Build. Mater., 218, 644-656. https://doi.org/10.1016/j.conbuildmat.2019.05.147.
  27. Oehlers, D. and Johnson, R. (1987), "The strength of stud shear connections in composite beams", The Structural Engineerv., 65B(2), 44-48.
  28. Oguejiofor, E. and Hosain, M. (1994), "A parametric study of perfobond rib shear connection", Can. J. Civil Eng., 21(4), 614-625. https://doi.org/10.1139/l94-063.
  29. Pavlovic, M., Markovic, Z., Veljkovic, M. and Budevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in push-out tests", J. Constr. Steel Res., 88, 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.
  30. Rosenblattt, F. (1958), "The perception: A probabilistic model for information storage and organization in the brain", Psychological Review, 65, 386-408. https://doi.org/10.1037/h0042519.
  31. Segal, M.M. (1988), "Explorations In Parallel Distributed-Processing - a Handbook Of Models, Programs, And Exercises - Mcclellan,Jl, Rumelhart,De", Science, 241(4869), 1107-1108. https://doi.org/ 10.1126/science.241.4869.1107.
  32. Shahabi, S.E.M., Sulong, N.H.R., Shariati, M. and Shah, S.N.R. (2016), "Performance of shear connectors at elevated temperatures-A review", Steel Compos. Struct., 20(1), 185-203. https://doi.org/10.12989/scs.2016.20.1.185.
  33. Su, Q.T., Wang, W., Luan, H.W. and Yang, G.T. (2014), "Experimental research on bearing mechanism of perfobond rib shear connectors", J. Constr. Steel Res., 95, 22-31. https://doi.org/10.1016/j.jcsr.2013.11.020.
  34. Su, Q.T., Yang, G.T. and Li, C.X. (2014), "Structural behaviour of perforated shear connectors with flange heads in composite girders: an experimental approach", Int. J. Steel Struct., 14(1), 151-164. https://doi.org/10.1007/s13296-014-1013-5.
  35. Suwaed, A.S.H. and Karavasilis, T.L. (2018), "Removable shear connector for steel-concrete composite bridges", Steel Compos. Struct., 29(1), 107-123. https://doi.org/10.12989/scs.2018.29.1.107.
  36. Taffese, W.Z., Sistonen, E. and Puttonen, J. (2015), "CaPrM: Carbonation prediction model for reinforced concrete using machine learning methods", Constr. Build. Mater., 100, 70-82. https://doi.org/10.1016/j.conbuildmat.2015.09.058.
  37. Vianna, J.D., Costa-Neves, L.F., Vellasco, P.C.G.D. and de Andrade, S.A.L. (2008), "Structural behaviour of T-Perfobond shear connectors in composite girders: An experimental approach", Eng. Struct., 30(9), 2381-2391. https://doi.org/10.1016/j.engstruct.2008.01.015.
  38. Wang, B., Man, T. and Jin, H. (2015), "Prediction of expansion behavior of self-stressing concrete by artificial neural networks and fuzzy inference systems", Constr. Build. Mater., 84, 184-191. https://doi.org/10.1016/j.conbuildmat.2015.03.059.
  39. Wang, Q. (2013), "Experimental Research on Mechanical Behavior and Design Method of Stud Connectors", Doctor's dissertation: Tongji Univercity.
  40. Wang, Y.C. (1998), "Deflection of steel-concrete composite beams with partial shear interaction", J. Struct. Eng., 124(10), 1159-1165. https://doi.org/10.1061/(Asce)0733-9445(1998)124:10(1159).
  41. Wei, X., Shariati, M., Zandi, Y., Pei, S.L., Jin, Z.B., Gharachurlu, S., Abdullahi, M.M., Tahir, M.M. and Khorami, M. (2018), "Distribution of shear force in perforated shear connectors", Steel Compos. Struct., 27(3), 389-399. https://doi.org/10.12989/scs.2018.27.3.389.
  42. Zhao, Z. and Ren, L. (2002), "Failure criterion of concrete under triaxial stresses using neural networks", Comput.-Aided Civil Infrastruct. Eng., 17, 68-73. https://doi.org/10.1111/1467-8667.00254
  43. Zheng, S.J. and Liu, Y.Q. (2014), "Experiment of initial shear stiffness of perfobond connector", China J. Highway Transport. 27(11), 69-75.