DOI QR코드

DOI QR Code

Mitochondrial Quality Control in the Heart: New Drug Targets for Cardiovascular Disease

  • Oh, Chang-Myung (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Ryu, Dongryeol (Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine) ;
  • Cho, Sungsoo (Division of Cardiovascular Medicine, Department of Internal Medicine, Dankook University College of Medicine, Dankook University Hospital) ;
  • Jang, Yangsoo (Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine)
  • 투고 : 2019.12.26
  • 심사 : 2020.02.18
  • 발행 : 2020.05.31

초록

Despite considerable efforts to prevent and treat cardiovascular disease (CVD), it has become the leading cause of death worldwide. Cardiac mitochondria are crucial cell organelles responsible for creating energy-rich ATP and mitochondrial dysfunction is the root cause for developing heart failure. Therefore, maintenance of mitochondrial quality control (MQC) is an essential process for cardiovascular homeostasis and cardiac health. In this review, we describe the major mechanisms of MQC system, such as mitochondrial unfolded protein response and mitophagy. Moreover, we describe the results of MQC failure in cardiac mitochondria. Furthermore, we discuss the prospects of 2 drug candidates, urolithin A and spermidine, for restoring mitochondrial homeostasis to treat CVD.

키워드

과제정보

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (2016R1A6A3A04010466 to C.M.O.) and (2017R1D1A1B03032708 to D.R.).

참고문헌

  1. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest 2018;128:3716-26. https://doi.org/10.1172/JCI120849
  2. Pickles S, Vigie P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol 2018;28:R170-85. https://doi.org/10.1016/j.cub.2018.01.004
  3. Smyrnias I, Gray SP, Okonko DO, et al. Cardioprotective effect of the mitochondrial unfolded protein response during chronic pressure overload. J Am Coll Cardiol 2019;73:1795-806. https://doi.org/10.1016/j.jacc.2018.12.087
  4. Campos JC, Bozi LH, Bechara LR, Lima VM, Ferreira JC. Mitochondrial quality control in cardiac diseases. Front Physiol 2016;7:479.
  5. Guaragnella N, Coyne LP, Chen XJ, Giannattasio S. Mitochondria-cytosol-nucleus crosstalk: learning from Saccharomyces cerevisiae. FEMS Yeast Res 2018;18:foy088.
  6. Goldman SJ, Taylor R, Zhang Y, Jin S. Autophagy and the degradation of mitochondria. Mitochondrion 2010;10:309-15. https://doi.org/10.1016/j.mito.2010.01.005
  7. Brown DA, Perry JB, Allen ME, et al. Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 2017;14:238-50. https://doi.org/10.1038/nrcardio.2016.203
  8. Kuzmicic J, Del Campo A, Lopez-Crisosto C, et al. Mitochondrial dynamics: a potential new therapeutic target for heart failure. Rev Esp Cardiol 2011;64:916-23. https://doi.org/10.1016/j.recesp.2011.05.018
  9. Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol 2013;61:599-610. https://doi.org/10.1016/j.jacc.2012.08.1021
  10. Szklarczyk R, Nooteboom M, Osiewacz HD. Control of mitochondrial integrity in ageing and disease. Philos Trans R Soc Lond B Biol Sci 2014;369:20130439. https://doi.org/10.1098/rstb.2013.0439
  11. Ren M, Phoon CK, Schlame M. Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 2014;55:1-16.
  12. Moehle EA, Shen K, Dillin A. Mitochondrial proteostasis in the context of cellular and organismal health and aging. J Biol Chem 2019;294:5396-407. https://doi.org/10.1074/jbc.TM117.000893
  13. Yi HS. Implications of mitochondrial unfolded protein response and mitokines: a perspective on fatty liver diseases. Endocrinol Metab (Seoul) 2019;34:39-46. https://doi.org/10.3803/EnM.2019.34.1.39
  14. Ostermann J, Horwich AL, Neupert W, Hartl FU. Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 1989;341:125-30. https://doi.org/10.1038/341125a0
  15. Hohfeld J, Hartl FU. Role of the chaperonin cofactor Hsp10 in protein folding and sorting in yeast mitochondria. J Cell Biol 1994;126:305-15. https://doi.org/10.1083/jcb.126.2.305
  16. Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO. The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 2000;275:3305-12. https://doi.org/10.1074/jbc.275.5.3305
  17. Wang Y, Branicky R, Noe A, Hekimi S. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 2018;217:1915-28. https://doi.org/10.1083/jcb.201708007
  18. Baker MJ, Tatsuta T, Langer T. Quality control of mitochondrial proteostasis. Cold Spring Harb Perspect Biol 2011;3:a007559.
  19. Tondera D, Grandemange S, Jourdain A, et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 2009;28:1589-600. https://doi.org/10.1038/emboj.2009.89
  20. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science 2012;337:1062-5. https://doi.org/10.1126/science.1219855
  21. Chinnery PF, Hudson G. Mitochondrial genetics. Br Med Bull 2013;106:135-59. https://doi.org/10.1093/bmb/ldt017
  22. Melber A, Haynes CM. UPRmt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 2018;28:281-95. https://doi.org/10.1038/cr.2018.16
  23. Zhang J. Autophagy and mitophagy in cellular damage control. Redox Biol 2013;1:19-23. https://doi.org/10.1016/j.redox.2012.11.008
  24. Jang JY, Blum A, Liu J, Finkel T. The role of mitochondria in aging. J Clin Invest 2018;128:3662-70. https://doi.org/10.1172/JCI120842
  25. Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 2012;337:587-90. https://doi.org/10.1126/science.1223560
  26. Seiferling D, Szczepanowska K, Becker C, et al. Loss of CLPP alleviates mitochondrial cardiomyopathy without affecting the mammalian UPRmt. EMBO Rep 2016;17:953-64. https://doi.org/10.15252/embr.201642077
  27. Fiorese CJ, Schulz AM, Lin YF, Rosin N, Pellegrino MW, Haynes CM. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr Biol 2016;26:2037-43. https://doi.org/10.1016/j.cub.2016.06.002
  28. Wang YT, Lim Y, McCall MN, et al. Cardioprotection by the mitochondrial unfolded protein response requires ATF5. Am J Physiol Heart Circ Physiol 2019;317:H472-8.
  29. Quiros PM, Prado MA, Zamboni N, et al. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol 2017;216:2027-45. https://doi.org/10.1083/jcb.201702058
  30. Shires SE, Gustafsson AB. Mitophagy and heart failure. J Mol Med (Berl) 2015;93:253-62. https://doi.org/10.1007/s00109-015-1254-6
  31. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 2010;191:933-42. https://doi.org/10.1083/jcb.201008084
  32. Chan NC, Salazar AM, Pham AH, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 2011;20:1726-37. https://doi.org/10.1093/hmg/ddr048
  33. Nah J, Miyamoto S, Sadoshima J. Mitophagy as a protective mechanism against myocardial stress. Compr Physiol 2017;7:1407-24.
  34. Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008;283:10892-903. https://doi.org/10.1074/jbc.M800102200
  35. Zhang W, Ren H, Xu C, et al. Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. eLife 2016;5:e21407. https://doi.org/10.7554/eLife.21407
  36. Murakawa T, Yamaguchi O, Hashimoto A, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 2015;6:7527. https://doi.org/10.1038/ncomms8527
  37. Jovaisaite V, Mouchiroud L, Auwerx J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol 2014;217:137-43. https://doi.org/10.1242/jeb.090738
  38. Xu M, Xue RQ, Lu Y, et al. Choline ameliorates cardiac hypertrophy by regulating metabolic remodelling and UPRmt through SIRT3-AMPK pathway. Cardiovasc Res 2019;115:530-45. https://doi.org/10.1093/cvr/cvy217
  39. Yarbrough WM, Mukherjee R, Ikonomidis JS, Zile MR, Spinale FG. Myocardial remodeling with aortic stenosis and after aortic valve replacement: mechanisms and future prognostic implications. J Thorac Cardiovasc Surg 2012;143:656-64. https://doi.org/10.1016/j.jtcvs.2011.04.044
  40. Wang YT, Lim Y, McCall MN, Haynes CM, Nehrke KW, Brookes PS. Cardioprotection by the mitochondrial unfolded protein response (UPRmt) is mediated by activating transcription factor 5 (ATF5). bioRxiv 2018:344606.
  41. Nadtochiy SM, Wang YT, Nehrke K, Munger J, Brookes PS. Cardioprotection by nicotinamide mononucleotide (NMN): involvement of glycolysis and acidic pH. J Mol Cell Cardiol 2018;121:155-62. https://doi.org/10.1016/j.yjmcc.2018.06.007
  42. Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ Res 2017;120:1812-24. https://doi.org/10.1161/CIRCRESAHA.117.311082
  43. Billia F, Hauck L, Konecny F, Rao V, Shen J, Mak TW. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci U S A 2011;108:9572-7. https://doi.org/10.1073/pnas.1106291108
  44. Siddall HK, Yellon DM, Ong SB, et al. Loss of PINK1 increases the heart's vulnerability to ischemia-reperfusion injury. PLoS One 2013;8:e62400. https://doi.org/10.1371/journal.pone.0062400
  45. Kubli DA, Zhang X, Lee Y, et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 2013;288:915-26. https://doi.org/10.1074/jbc.M112.411363
  46. Shirakabe A, Zhai P, Ikeda Y, et al. Drp1-dependent mitochondrial autophagy plays a protective role against pressure overload-induced mitochondrial dysfunction and heart failure. Circulation 2016;133:1249-63. https://doi.org/10.1161/CIRCULATIONAHA.115.020502
  47. Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 2018;122:624-38. https://doi.org/10.1161/CIRCRESAHA.117.311586
  48. Liang Q, Kobayashi S. Mitochondrial quality control in the diabetic heart. J Mol Cell Cardiol 2016;95:57-69. https://doi.org/10.1016/j.yjmcc.2015.12.025
  49. Galloway CA, Yoon Y. Mitochondrial dynamics in diabetic cardiomyopathy. Antioxid Redox Signal 2015;22:1545-62. https://doi.org/10.1089/ars.2015.6293
  50. Tong M, Saito T, Zhai P, et al. Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circ Res 2019;124:1360-71. https://doi.org/10.1161/CIRCRESAHA.118.314607
  51. Wang S, Zhao Z, Feng X, et al. Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med 2018;22:5132-44. https://doi.org/10.1111/jcmm.13802
  52. Hoshino A, Mita Y, Okawa Y, et al. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat Commun 2013;4:2308. https://doi.org/10.1038/ncomms3308
  53. Kubli DA, Quinsay MN, Gustafsson AB. Parkin deficiency results in accumulation of abnormal mitochondria in aging myocytes. Commun Integr Biol 2013;6:e24511. https://doi.org/10.4161/cib.24511
  54. Rana A, Rera M, Walker DW. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A 2013;110:8638-43. https://doi.org/10.1073/pnas.1216197110
  55. Diwan A, Krenz M, Syed FM, et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 2007;117:2825-33. https://doi.org/10.1172/JCI32490
  56. Yussman MG, Toyokawa T, Odley A, et al. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med 2002;8:725-30. https://doi.org/10.1038/nm719
  57. Cicero AF, Colletti A. Role of phytochemicals in the management of metabolic syndrome. Phytomedicine 2016;23:1134-44. https://doi.org/10.1016/j.phymed.2015.11.009
  58. Vasanthi HR, ShriShriMal N, Das DK. Phytochemicals from plants to combat cardiovascular disease. Curr Med Chem 2012;19:2242-51. https://doi.org/10.2174/092986712800229078
  59. Vicinanza R, Zhang Y, Henning SM, Heber D. Pomegranate juice metabolites, ellagic acid and urolithin a, synergistically inhibit androgen-independent prostate cancer cell growth via distinct effects on cell cycle control and apoptosis. Evid Based Complement Alternat Med 2013;2013:247504.
  60. Ryu D, Mouchiroud L, Andreux PA, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 2016;22:879-88. https://doi.org/10.1038/nm.4132
  61. Sumner MD, Elliott-Eller M, Weidner G, et al. Effects of pomegranate juice consumption on myocardial perfusion in patients with coronary heart disease. Am J Cardiol 2005;96:810-4. https://doi.org/10.1016/j.amjcard.2005.05.026
  62. Aviram M, Rosenblat M. Pomegranate protection against cardiovascular diseases. Evid Based Complement Alternat Med 2012;2012:382763.
  63. Savi M, Bocchi L, Mena P, et al. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 2017;16:80. https://doi.org/10.1186/s12933-017-0561-3
  64. Wu X, Zhu X, Zhou Y. Urolithin a suppress cardiac fibrosis via autophagy pathway in the diabetic cardiomyopathy. Circ Res 2019;125:A531.
  65. Andreux PA, Blanco-Bose W, Ryu D, et al. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat Metab 2019;1:595-603. https://doi.org/10.1038/s42255-019-0073-4
  66. Larque E, Sabater-Molina M, Zamora S. Biological significance of dietary polyamines. Nutrition 2007;23:87-95. https://doi.org/10.1016/j.nut.2006.09.006
  67. Lenzen S, Hickethier R, Panten U. Interactions between spermine and Mg2+ on mitochondrial Ca2+ transport. J Biol Chem 1986;261:16478-83. https://doi.org/10.1016/S0021-9258(18)66591-3
  68. Jing YH, Yan JL, Wang QJ, et al. Spermidine ameliorates the neuronal aging by improving the mitochondrial function in vitro. Exp Gerontol 2018;108:77-86. https://doi.org/10.1016/j.exger.2018.04.005
  69. Fan J, Yang X, Li J, et al. Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway. Oncotarget 2017;8:17475-90. https://doi.org/10.18632/oncotarget.15728
  70. Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med 2016;22:1428-38. https://doi.org/10.1038/nm.4222
  71. Tong D, Hill JA. Spermidine promotes cardioprotective autophagy. Circ Res 2017;120:1229-31. https://doi.org/10.1161/CIRCRESAHA.117.310603
  72. Madeo F, Bauer MA, Carmona-Gutierrez D, Kroemer G. Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy 2019;15:165-8. https://doi.org/10.1080/15548627.2018.1530929
  73. Stegemann C, Pechlaner R, Willeit P, et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation 2014;129:1821-31. https://doi.org/10.1161/CIRCULATIONAHA.113.002500
  74. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol 2006;16:R551-60.
  75. Madeo F, Carmona-Gutierrez D, Kepp O, Kroemer G. Spermidine delays aging in humans. Aging (Albany NY) 2018;10:2209-11.
  76. Elhassan YS, Kluckova K, Fletcher RS, et al. Nicotinamide riboside augments the human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures in aged subjects: a placebo-controlled, randomized trial. bioRxiv 2019:680462.

피인용 문헌

  1. Cellular Protein Quality Control in Diabetic Cardiomyopathy: From Bench to Bedside vol.7, 2020, https://doi.org/10.3389/fcvm.2020.585309
  2. Exogenous spermine attenuates myocardial fibrosis in diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress and the canonical Wnt signaling pathway vol.44, pp.8, 2020, https://doi.org/10.1002/cbin.11360
  3. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association vol.22, pp.2, 2021, https://doi.org/10.3390/ijms22020614