DOI QR코드

DOI QR Code

Characterization of Biomass-Based Foam Structures for Home-Meal-Replacement Containers

가정간편식 용기용 바이오매스 기반 발포구조체의 특성에 관한 연구

  • Received : 2020.07.27
  • Accepted : 2020.08.19
  • Published : 2020.08.31

Abstract

A series of foamed plastic sheets containing biomass (as HMR container) were developed via different foaming process temperatures, and their density, porosity, WVTR, and pore morphology were evaluated. Thermal stability of samples during re-heating the food in oven, change in morphology, density, porosity, and WVTR were investigated using a simulated thermal shock process according to MIL-STD-883E assay. As such, the pore size of samples was generally increased with increasing temperature of the foaming process. It can be explained that as foaming temperature increased, the viscosity of molten resins and the repulsive force against pore expansion decreased. In addition, an increase in the thermal shock cycle reduced the pore size and WVTR, while density increased because high temperature treatment that softened the sheet matrix was followed by a low temperature incubation, which contracted the matrix, thereby changing the physical and morphological properties of samples. However, an insignificant change in density was observed and WVTR tended to be decreased, indicating that as-prepared foamed plastic sheets could be used as a high thermal stable container for HMR application. Therefore, it found that the properties of newly developed HMR containers containing biomass were dependent on the foaming process temperature. Moreover, to better understanding of these newly developed containers, further investigations dealing with foaming process temperature based on various food items and cooking conditions are needed.

바이오매스가 포함된 발포구조체의 발포온도에 따른 SEM, 밀도, 공극률, 수분투과도 측정을 통해 특성 변화를 분석하였으며, 소비자가 해당 용기를 사용할 때의 열적 안정성을 확인하기 위해 MIL-STD규격에 따라 열충격 처리의 영향을 분석하였다. 측정 결과 발포온도가 증가할수록 대체로 기공의 크기는 증가하고 기공의 수는 감소하여 밀도는 통계적으로 유의한 차이가 없음을 확인하였다. 또한 공극률과 수분투과도 측정결과는 서로 다른 경향성을 보이고 있는데 이는 기공의 크기와 수, 기공 간의 구도가 변화하였기 때문인 것으로 사료되며, 이에 대한 추가적인 연구가 필요하다. 열충격 시험 결과, 열충격 반복횟수를 거듭할수록 기공의 크기가 감소하면서 밀도는 증가하고 공극률과 수분투과도는 감소하는 것을 확인할 수 있었다. 이는 시료에 고온을 가함으로써 시료가 연화되었고, 연화된 상태의 시료에 곧바로 저온을 가하여 시료가 수축되면서 기공의 크기와 구도가 변화하였기 때문인 것으로 판단된다. 하지만 밀도의 경우 통계적으로 유의한 차이가 없었으며 수분투과도의 경우 수치가 감소하는 경향을 확인할 수 있었으므로 해당 발포구조체로 제작된 HMR 용기는 열적 안정성이 있다고 판단할 수 있다.

Keywords

References

  1. Kim, Y. 2017. Trends in markets for home meal replacements. Food Sci. Ind. 50(1): 57-66.
  2. Yu, A., Choi, Y.S., Hong, J.S. and Choi, H.D. 2017. Development of home meal replacement products by food processing and packaging technology. Food Sci. Ind. 50(3): 39-50.
  3. Park, J. 2018. Review and prospects on the waste regulation in international law perspective. Yonsei Law Assoc. 32: 1-22. https://doi.org/10.33606/YLA.32.1
  4. Lee, H., Kwak, K.H. and Kim, J.K. 2012. Synthesis and characterization of bio-elastomer based on vegetable oils. Elast. Compos. 47(1): 30-35. https://doi.org/10.7473/EC.2012.47.1.030
  5. Luzi, F., Torre, L., Kenny, J.M. and Puglia, D. 2019. Bio-and fossil-based polymeric blends and nanocomposites for packaging: Structure-property relationship. Materials. 12(3); 471. https://doi.org/10.3390/ma12030471
  6. Lowell, S., Shields, J.E., Thomas, M.A. and Thommes, M. 2012. Characterization of porous solids and powders: surface area, pore size and density (Vol. 16): Springer Science & Business Media.
  7. Abdullah, W.R.W., Zakaria, A., Hashim, M., Rahman, M.M. and Ghazali, M.S.M. (2016). Stability of ZnO-$Pr_6O_{11}-Cr_2O_3$ varistor ceramics against electrical degradation. Materials Science Forum. 846:115-125. https://doi.org/10.4028/www.scientific.net/MSF.846.115
  8. Mei, H., Yan, Y., Huang, W., Jin, Z., Xu, Y. and Cheng, L. 2020. Optimizing combustion performance by controlling density of the highly permeable SiC fiber porous media. Ceram. Int. 46(8): 12386-12392. https://doi.org/10.1016/j.ceramint.2020.01.289
  9. Hyvaluoma, J., Raiskinmaki, P., Jasberg, A., Koponen, A., Kataja, M. and Timonen, J. 2004. Evaluation of a lattice-Boltzmann method for mercury intrusion porosimetry simulations. Fut. Gen. Comp. Sys. 20(6): 1003-1011. https://doi.org/10.1016/j.future.2003.12.013
  10. Xu, R., Xia, H., He, W., Li, Z., Zhao, J., Liu, B., Wang, Y., Lei, Q., Kong, Y. and Bai, Y. 2016. Controlled water vapor transmission rate promotes wound-healing via wound reepithelialization and contraction enhancement. Sci. Rep. 6: 24596. https://doi.org/10.1038/srep24596
  11. Curtzwiler, G., Vorst, K., Palmer, S. and Brown, J. 2008. Characterization of current environmentally-friendly films. J. Plast. Film Sheet. 24(3-4): 213-226. https://doi.org/10.1177/8756087908100836
  12. Plazek, D.J. 1965. Temperature dependence of the viscoelastic behavior of polystyrene. J. Phys. Chem. 69(10): 3480-3487. https://doi.org/10.1021/j100894a039
  13. Kong, Y., Seo, S., Kim, J. and Suhr, D. 2005. Characteristics of porous ceramics depending on water content of the water glass and heat treatment temperature. J. Korean Ceram. Soc. 42(10): 691-697. https://doi.org/10.4191/KCERS.2005.42.10.691
  14. Yue, P., Feng, J.J., Bertelo, C.A. and Hu, H.H. 2007. An arbitrary Lagrangian-Eulerian method for simulating bubble growth in polymer foaming. J. Comput. Phy. 226(2): 2229-2249. https://doi.org/10.1016/j.jcp.2007.07.007
  15. Kume, S., Yamada, I., Watari, K., Harada, I. and Mitsuishi, K. 2009. High thermal conductivity AlN filler for polymer/ceramics composites. J. American Ceram. Soc. 92: S153-S156. https://doi.org/10.1111/j.1551-2916.2008.02650.x
  16. Joardder, M.U., Karim, A., Kumar, C. and Brown, R.J. 2015. Porosity: establishing the relationship between drying parameters and dried food quality: Springer.
  17. Stanley-Wood, N. and Johansson, M. 1980. Variation of intra- and inter-particle porosity with degree of compaction. Analyst. 105(1256): 1104-1112. https://doi.org/10.1039/an9800501104
  18. Yesil, Y. and Bhat, G.S. 2017. Porosity and barrier properties of polyethylene meltblown nonwovens. The J. Text. Inst. 108(6): 1035-1040. https://doi.org/10.1080/00405000.2016.1218109
  19. Graton, L.C. and Fraser, H. 1935. Systematic packing of spheres: with particular relation to porosity and permeability. The Journal of Geology. 43(8, Part 1). 785-909. https://doi.org/10.1086/624386
  20. Ray, B. 2005. Thermal shock and thermal fatigue on delamination of glass-fiber-reinforced polymeric composites. J. Reinf. Plast.Compos. 24(1): 111-116. https://doi.org/10.1177/0731684405042953