DOI QR코드

DOI QR Code

Properties and sugar composition of an apple vinegar beverage containing oligosaccharides during storage

첨가당의 종류에 따른 저장 중 식초음료의 품질특성

  • Shin, Jang-Ho (Department of Foodservice Management and Nutrition, Sangmyung University) ;
  • Chang, Jin-Hee (Department of Food and Nutrition, Sangmyung University) ;
  • Han, Jung-Ah (Department of Food and Nutrition, Sangmyung University)
  • 신장호 (상명대학교 대학원 외식영양학과) ;
  • 장진희 (상명대학교 식품영양학과) ;
  • 한정아 (상명대학교 식품영양학과)
  • Received : 2020.05.13
  • Accepted : 2020.06.29
  • Published : 2020.08.31

Abstract

In this study, we prepared apple vinegar beverage with different acidity levels (low and high, LA and HA, respectively) containing fructooligosaccharide (FOS) or isomaltooligosaccharide (IMO). The changes in their properties and sugar composition during storage (at 40℃ for 6 months) with those of the control (sample containing sucrose, SUR) were compared. The reducing sugar content in all samples increased during the storage, except for IMO-LA, and SUR showed the highest values. More organic acids were found in the HA samples than in the LA samples. The browning degree, turbidity, and total phenolic content increased during storage in all samples although IMO-LA showed the least. The IMO amount was maintained in the sample during storage. However, most of the FOS and SUR were degraded into glucose and fructose. In conclusion, the properties of low-acidity beverages could be better maintained with the addition of oligosaccharides compared to SUR, and IMO was more suitable for this purpose than FOS, when considering functionality.

설탕을 대체하여 프락토올리고당과 이소말토올리고당을 첨가당으로 저산도 및 고산도 식초 음료를 제조한 후, 저장기간 중 이화학적 품질 특성과 올리고당 안정성을 비교하였다. pH는 저장 기간에 따라 모든 시료가 감소하는 경향을 보였으며, 감소폭은 이소말토올리고당이 가장 작았으며, 프락토올리고당, 설탕 첨가군 순으로 나타났다. 환원당은 제조 직후에는 설탕 첨가군이 가장 낮고 이소말토올리고당 첨가군이 가장 높았으나, 이소말토 올리고당 첨가군은 저장기간 동안 유의적인 변화를 보이지 않은 반면, 설탕과 프락토올리고당 첨가군은 저장 1달차에 급격히 증가한 후 6개월까지 완만히 증가하였고, 최종적으로 설탕 첨가군이 가장 높은 함량을 나타냈다. 갈색도는 고산도 설탕 첨가군이 저장 3개월부터 급격히 증가함을 보였고, 탁도 역시 고산도 설탕 첨가군이 저장 2개월부터 급격히 증가하는 모습을 보였다. 총 폴리페놀 함량의 경우, 저산도 이소말토올리고당 첨가군을 제외한 모든 시료가 저장 기간에 따라 증가함을 보였으며, 산도에 따라서는 고산도 식초 음료의 총 폴리페놀 함량이 저산도 식초 음료와 비교해 높은 것으로 나타나, 최종적으로 고산도 설탕 첨가군이 가장 높은 값을 보였다. 이는 첨가당의 산 안정성에 기인한 것으로 40℃에서 저장 중 식초 음료 중 함유되어 있던 환원성 알데하이드와 아미노산, 펩타이드 등의 아미노화합물이 amino-carbonyl 반응을 통해 melanoidin을 생성하였기 때문으로 보인다. 저장 기간 동안 첨가당의 함량과 안정성을 비교하였을 때 저산도 및 고산도 식초 음료의 설탕과 프락토올리고당은 제조 직후와 비교해 저장 1달차부터 급격히 감소하여, 저장 6개월 후 대부분 포도당과 과당으로 분해되었으나 이소말토올리고당은 모든 시료에서 제조 직후와 큰 차이를 보이지 않고 안정성을 나타내었다. 이상의 결과로 식초와 같은 산도가 낮은 음료류에는 첨가당으로 이소말토올리고당을 사용하는 것이 음료의 관능적 특성을 유지하면서 체내에 유익한 올리고당의 기능성 효과를 얻는 데에 바람직할 것으로 생각된다.

Keywords

References

  1. AOAC. Association of Official Analytical Chemists. Arlington, VA, USA (1995)
  2. Bae MJ, Yoo SH. Changes in oligosaccharide content during the storage period of maesil cheong formulated with functional oligosaccharides. Korean J. Food Sci. Technol. 51: 169-175 (2019) https://doi.org/10.9721/KJFST.2019.51.2.169
  3. Bidlack WR, Omaye ST, Meskin MS, Topham DKW. Phytochemicals as Bioactive Agents,. Technomic Publishing Co., Lancaster, Basel, Switzerland. pp. 25-36 (1999)
  4. Brudzynski K, Miotto D. The recognition of high molecular weight melanoidins as the main components responsible for radical-scavenging capacity of unheated and heat-treated Canadian honeys. Food Chem. 125: 570-575 (2011) https://doi.org/10.1016/j.foodchem.2010.09.049
  5. Chen H, Chen T, Giudici P, Chen F. Vinegar functions on health: Constituents, sources, and formation mechanisms. Compr. Rev. Food Sci. Food Saf. 15: 1124-1138 (2016) https://doi.org/10.1111/1541-4337.12228
  6. Choi HJ, Lim BR, Ha SC, Kwon GS, Kim DW, Joo WH. Physicochemical characteristics and antioxidant activities of freezing pretreated black garlic. J. Life Sci. 27: 471-475 (2017) https://doi.org/10.5352/JLS.2017.27.4.471
  7. Choi SY, Gu YJ, Lee MG. A study on the development of persimmon beverage (final report). Korea Food Research Institute (1995)
  8. Dennis EJ, Kang M, Han SN. Relation between beverage consumption pattern and metabolic syndrome among healthy Korean adults. Korean J. Community Nutr. 22: 441-455 (2017) https://doi.org/10.5720/kjcn.2017.22.5.441
  9. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
  10. Fiordaliso M, Kok N, Desager JP, Goethals F, Deboyser D, Roberfroid M, Delzenne N. Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids. 30: 163-167 (1995) https://doi.org/10.1007/BF02538270
  11. Gil BI. Physicochemical characteristics of brown rice vinegars produced by traditional and industrial manufacturing method. J. Nat. Sci. 11: 1-7 (2004)
  12. Gourineni V, Stewart ML, Icoz D, Zimmer JP. Gastrointestinal tolerance and glycemic response of isomaltooligosaccharides in healthy adults. Nutrients 10: 301 (2018) https://doi.org/10.3390/nu10030301
  13. Havel PJ. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr. Rev. 63: 133-157 (2005) https://doi.org/10.1111/j.1753-4887.2005.tb00132.x
  14. Hidaka H, Eida T, Adachi T, Saitoh Y. Industrial production of fructooligosaccharides and its application for human and animals. Nippon Nogeikagaku Kaishi. 61: 915-923 (1987) https://doi.org/10.1271/nogeikagaku1924.61.915
  15. Hwang JY, Pyo YH. Comparison of organic acid contents and xanthine oxidase inhibitory activities of commercial fruit juices and vinegars. J. Korean Soc. Food Sci. Nutr. 45: 1685-1690 (2016) https://doi.org/10.3746/jkfn.2016.45.11.1685
  16. Jeong YJ, Seo KI, Kim KS. Physicochemical properties of marketing and intensive persimmon vinegars. J. East Asian Diet. Life. 6: 355-363 (1996)
  17. Jo YJ, Jang SY, Kim OM, Park CW, Jeong YJ. Effects of sugars addition in alcohol fermentation of oriental melo. J. Korean Soc. Food Sci. Nutr. 39: 1359-1365 (2010) https://doi.org/10.3746/jkfn.2010.39.9.1359
  18. Jo DJ, Park EJ, Kim GR, Yeo SH, Jeong YJ, Kwon JH. Quality comparison of commercial cider vinegars by their acidity levels. Korean J. Food Sci. Technol. 44: 699-703 (2012) https://doi.org/10.9721/KJFST.2012.44.6.699
  19. Jo DJ, Park EJ, Yeo SH, Jeong YJ, Kwon JH. Physicochemical and antioxidant properties of commercial vinegars with high acidity. J. Korean Soc. Food Sci. Nutr. 42: 1204-1210 (2013) https://doi.org/10.3746/jkfn.2013.42.8.1204
  20. Johnston CS, Steplewska I, Long CA, Harris LN, Ryals RH. Examination of the antiglycemic properties of vinegar in healthy adults. Ann. Nutr. Metab. 56: 74-79 (2010) https://doi.org/10.1159/000272133
  21. Kang MJ, Ha JH, E Shin EC, Choi HW, Lee YS. Physicochemical properties, volatile components, sensory characteristics and consumer acceptability of commercially available Grape vinegars. J. Korean Soc. Food Sci. Nutr. 48: 868-878 (2019) https://doi.org/10.3746/jkfn.2019.48.8.868
  22. KFDA. Korea Health Supplements Food Standard Codex. Korea food and Drug Administration, Seoul, Korea. pp. 78 (2016)
  23. Kim KO, Kim SM, Kim SM, Kim DY, Jo D, Yeo SH, Jeong YJ, Kwon JH. Physicochemical properties of commercial fruit vinegars with different fermentation methods. J. Korean Soc. Food Sci. Nutr. 42: 736-742 (2013) https://doi.org/10.3746/jkfn.2013.42.5.736
  24. Kim HK, Lee GH. Characteristics of sponge cake prepared with yacon concentrates as sugar Substitute. J. Korean Soc. Food Sci. Nutr. 45:1453-1459 (2016) https://doi.org/10.3746/jkfn.2016.45.10.1453
  25. Kim JR, Yook C, Kwon HK, Hing SY, Park CK, Park KH. Physical and Physiological Properties of Isomaltooligosaccharides and Fructooligosaccharides. Korean J. Food Sci. Technol. 4: 170-175 (1995)
  26. Kim GR, Yoon SR, Lee JH, Yeo SH, Jeong YJ, Yoon KY, Kwon JH. Physicochemical properties of and volatile components in commercial fruit vinegars. Korean J. Food Preserv. 17: 616-624 (2010)
  27. Kweon HK, Yook C. Physicochemical properties of isomaltooligosaccharide and its application to food. Bioind. News. 7: 26-30 (1994)
  28. Lee GD. Optimization of formation of the ginsenoside Rg3 in black ginseng steamed with acetic acid solution. Korean J. Food Preserv. 27: 66-73 (2020) https://doi.org/10.11002/kjfp.2020.27.1.66
  29. Lee SM, Choi YM, Kim YW, Kim DJ, Lee JS. Antioxidant activity of vinegars commercially available in Korean markets. Food Eng. Prog. (2009)
  30. Lee GD, Kim SK, Lee MH. Quality change of beverage containing muskmelon vinegar and concentrated muskmelon juice during storage. Korean J. Food Preserv. 12: 229-229 (2005)
  31. Lee MH, No HK. Clarification of persimmon vinegar using chitosan. J. Korean Soc. Food Sci. Nutr. 30: 277-282 (2001)
  32. Lertittikul W, Benjakul S, Tanaka M. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein-glucose model system as influenced by pH. Food Chem. 100: 669-677 (2007) https://doi.org/10.1016/j.foodchem.2005.09.085
  33. Liu JY, Gan J, Nirasawa S, Zhou Y, Xu JL, Zhu SH, Cheng YQ. Cellular uptake and trans-enterocyte transport of phenolics bound to vinegar melanoidins. J. Funct. Foods. 37: 632-640 (2017) https://doi.org/10.1016/j.jff.2017.08.009
  34. Malik VS, Popkin BM, Bray GA, Desprs JP, Willett WC, Hu FB. Sugar-sweetened and risk of metabolic syndrome and type 2 diabetes: a beverages meta-analysis. Diabetes Care. 33: 2477-2483 (2010) https://doi.org/10.2337/dc10-1079
  35. Mato I, Surez-Luque S, Huidobro JF. A review of the analytical methods to determine organic acids in grape juices and wines. Food Res. Int. 38: 1175-1188 (2005) https://doi.org/10.1016/j.foodres.2005.04.007
  36. Miller GL. Use of dinitrosalicylic acid regent for determination of reducing sugar. Anal. Chem. 31: 426-428 (1959) https://doi.org/10.1021/ac60147a030
  37. Modler HW. Bifidogenic factors-sources, metabolism and applications. Int. Dairy J. 4: 383-407 (1994) https://doi.org/10.1016/0958-6946(94)90055-8
  38. Park YO. Quality comparison of natural fermented vinegars manufactured with different raw materials. J. Korean Soc. Food Sci. Nutr. 47: 46-54 (2018) https://doi.org/10.3746/jkfn.2018.47.1.046
  39. Park BS, Cho BK, Lee SY, Lim SH, Kim DI, Kim BG. Optimization of biotransformation process for sodium gluconate production by Aspergillus niger. Koran J. Biotechnol. Bioeng. 14: 309-315 (1999)
  40. Rousseau V, Lepargneur JP, Roques C, Remaud-Simeon M, Paul F. Prebiotic effects of oligosaccharides on selected vaginal lactobacilli and pathogenic microorganisms. Anaerobe. 11: 145-153 (2005) https://doi.org/10.1016/j.anaerobe.2004.12.002
  41. Seo HB, Song YJ, Kang JY, Kwon DK, Kim PG, Ryu SP. The study of perisimmon vinegar as functional drink on reduce blood lipids and enhance exercise performance. J. Korean For. Soc. 100: 232-239 (2011)
  42. Shin JH, Lee JE, Chang JH, Han JA. Physical properties and sugar composition stability of food containing different oligosaccharides. Korean J. Food Sci. Technol. 51: 459-465 (2019) https://doi.org/10.9721/KJFST.2019.51.5.459
  43. Smrke S, Opitz SE, Vovk I, Yeretzian C. How does roasting affect the antioxidants of a coffee brew? Exploring the antioxidant capacity of coffee via on-line antioxidant assays coupled with size exclusion chromatography. Food Funct. 4: 1082-1092 (2013) https://doi.org/10.1039/c3fo30377b
  44. Son MJ, Cha CG, Park JH, Kim CS, Lee SP. Manufacture of dropwort extract using brown sugar, fructose syrup and oligosaccharides. J. Korean Soc. Food Sci. Nutr. 34: 1486-1490 (2005)
  45. Van Rompay MI, McKeown NM, Goodman E, Eliasziw M, Chomitz VR, Gordon CM, Economos CD, Sacheck JM. Sugar-sweetened beverage intake is positively associated with baseline triglyceride concentrations, and changes in intake are inversely associated with changes in HDL cholesterol over 12 months in a multiethnic sample of children. J Nutr. 145: 2389-2395 (2015) https://doi.org/10.3945/jn.115.212662
  46. Woo SM, Kim OM, Choi IW, Kim YS, Choi HD, Jeong YJ. Condition of acetic acid fermentation and effect of oligosaccharide addition on kiwi vinegar. Korean J. Food Preserv. 14: 100-104 (2007)
  47. Xia T, Yao JH, Zhang J, Zheng Y, Song J, Wang M. Protective effects of Shanxi aged vinegar against hydrogen peroxide-induced oxidative damage in LO2 cells through Nrf2-mediated antioxidant responses. RSC Adv. 7: 17377-17386 (2017) https://doi.org/10.1039/C6RA27789F
  48. Yi TG, Park YR, Kim HJ, Hong SJ, Kang YH, Park NI. Physicochemical properties of blueberry syrup prepared with fructooligosaccharide. Korean J. Food Preserv. 24: 585-592 (2017) https://doi.org/10.11002/kjfp.2017.24.5.585
  49. Yoon EK. Current status of Korean sugar intake and reduction policy. Food Ind. Nutr. 23: 10-13 (2018)
  50. Yun JW, Ro TW, Kang SC. Stability of oligosaccharides during fermentation of Kimchi. Korean J. Food. Sci. Technol. 28: 203-206 (1996)