DOI QR코드

DOI QR Code

Luminescent Properties and Anti-Counterfeiting Applications of SrWO4:RE3+ (RE=Dy, Sm, Dy/Sm) Phosphors Doped with Several Activator Ions

다양한 활성제 이온이 도핑된 SrWO4:RE3+ (RE=Dy, Sm, Dy/Sm) 형광체의 특성과 위조 방지 응용

  • Yoon, Soohwan (Division of Materials Science and Engineering, Silla University) ;
  • Cho, Shinho (Division of Materials Science and Engineering, Silla University)
  • Received : 2020.06.10
  • Accepted : 2020.07.29
  • Published : 2020.09.01

Abstract

A series of phosphors, SrWO4:5 mol% Dy3+, SrWO4:5 mol% Sm3+, and SrWO4:5 mol% Dy3+:x Sm3+ (x=1~15 mol%), were prepared using a facile co-precipitation. The crystal structure, morphology, photoluminescence properties, and application in anti-counterfeiting fields were investigated. The crystalline structures of the prepared phosphors were found to be tetragonal systems with the dominant peak occurring at the (112) plane. The excitation spectra of the Dy3+ singly-doped SrWO4 phosphors were composed of an intense charge-transfer band centered at 246 nm in the range of 210~270 nm and two weak peaks at 351 nm and 387 nm due to the 6H15/26P7/2 and 6H15/24I13/2 transitions of Dy3+ ions, respectively. The wavelength of 246 nm was optimum for exciting the luminescence of Dy3+ and Sm3+ co-doped SrWO4 phosphors. The emission spectra consisted of two intense blue and yellow emission bands at 480 nm and 573 nm corresponding to the 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+, and two strong emission peaks at 599 nm and 643 nm originating from the 4G5/26H7/2 and 4G5/26H9/2 transitions of Sm3+, respectively. As the concentration of Sm3+ ions increased, the emission intensities of Dy3+ rapidly decreased, while the emission intensities of Sm3+ gradually increased. These results suggest that the color of the emission light can be tuned from yellow to white by changing the concentration of Sm3+ ions at a fixed 5 mol% Dy3+. Furthermore, the fluorescent security inks were synthesized for use in anti-counterfeiting applications.

Keywords

References

  1. Z. Zhang, J. Li, N. Yang, Q. Liang, Y. Xu, S. Fu, J. Yan, J. Zhou, J. Shi, and M. Wu, Chem. Eng. J., 390, 124601 (2020). [DOI: https://doi.org/10.1016/j.cej.2020.124601]
  2. X. Wu, C. Jiang, Z. Liang, Q. Wang, J. Feng, D. Zhu, S. Pan, Z. Lin, D. Tan, and Z. Mu, Optik, 216, 164877 (2020). [DOI: https://doi.org/10.1016/j.ijleo.2020.164877]
  3. L. Y. Zhou, J. S. Wei, L. H. Yi, F. Z. Gong, J. L. Huang, and W. Wang, Mater. Res. Bull., 44, 1411 (2009). [DOI: https://doi.org/10.1016/j.materresbull.2008.11.019]
  4. Y. Ren, Y. Liu, and R. Yang, Superlattices Microstruct., 91, 138 (2016). [DOI: https://doi.org/10.1016/j.spmi.2015.12.026]
  5. M. Shi, D. Zhang, and C. Chang, J. Alloys Compd., 639, 168 (2015). [DOI: https://doi.org/10.1016/j.jallcom.2015.02.068]
  6. G. Zhu, Z. Ci, Y. Shi, and Y. Wang, Mater. Res. Bull., 55, 146 (2015). [DOI: https://doi.org/10.1016/j.materresbull.2014.04.030]
  7. X. Sun, Z. Huang, X. Fu, L. Xu, K. Liu, and H. Yuan, Ceram. Int., 46, 14252 (2020). [DOI: https://doi.org/10.1016/j.ceramint.2020.02.058]
  8. X. Tan, Y. Wang, and M. Zhang, J. Photochem. Photobiol., A, 353, 65 (2018). [DOI: https://doi.org/10.1016/j.jphotochem.2017.11.002]
  9. M. Yu, X. Xu, W. Zhang, X. Chen, P. Zhang, and Y. Huang, J. Alloys Compd., 817, 152761 (2020). [DOI: https://doi.org/10.1016/j.jallcom.2019.152761]
  10. H. Wu, Z. Sun, S. Gan, and L. Li. J. Photochem. Photobiol., A, 368, 258 (2019). [DOI: https://doi.org/10.1016/j.jphotochem.2018.09.048]
  11. M. B. Reddy, C. N. Raju, S. Sailaja, B. V. Rao, and B. S. Reddy, J. Lumin., 131, 2503 (2011). [DOI: https://doi.org/ 10.1016/j.jlumin.2011.06.015]
  12. C. J. Liang and H. Y. Siao, Mater. Chem. Phys., 177, 429 (2016). [DOI: https://doi.org/10.1016/j.matchemphys.2016.04.049]
  13. B. Verma, R. N. Baghel, D. P. Bisen, N. Brahme, and A. Khare, J. Alloys Compd., 838, 155326 (2020). [DOI: https://doi.org/10.1016/j.jallcom.2020.155326]
  14. N. P. Singh, N. R. Singh, Y. R. Devi, B. Singh Sh, Th. D. Singh, N. R. Singh, and N. M. Singh, Solid State Sci., 102, 106172 (2020). [DOI: https://doi.org/10.1016/j.solidstatesciences.2020.106172]
  15. F. B. Xiong, S. X. Liu, H. F. Lin, X. G. Meng, S. Y. Lian, and W. Z. Zhu, Opt. Laser Technol., 106, 29 (2018). [DOI: https://doi.org/10.1016/j.optlastec.2018.03.023]
  16. A. Hooda, S. P. Khatkar, A. Khatkar, R. K. Malik, M. Kumar, S. Devi, and V. B Taxak, J. Lumin., 217, 116806 (2020). [DOI: https://doi.org/10.1016/j.jlumin.2019.116806]
  17. P. Sun, S. Liu, S. Shu, K. Ding, Y. Wang, Y. Liu, B. Deng, and R. Yu, Opt. Mater., 96, 109300 (2019). [DOI: https://doi.org/10.1016/j.optmat.2019.109300]
  18. J. Lu, J. Zhou, H. Jia, and Y. Tian, Phys. B, 476, 50 (2015). [DOI: https://doi.org/10.1016/j.physb.2015.07.015]
  19. A. K. Bedyal, V. Kumar, R. Prakash, O. M. Ntwaeaborwa, and H. C. Swart, Appl. Surf. Sci., 329, 40 (2015). [DOI: https://doi.org/10.1016/j.apsusc.2014.12.056]
  20. S. Wang, Y. J. Han, L. Shi, M. X. Jia, Y. L. Tong, B. Zhang, Z. F. Mu, X. L. Lu, Z. W. Zhang, and A. J. Song, Inorg. Chem. Commun., 117, 107948 (2020). [DOI: https://doi.org/10.1016/j.inoche.2020.107948]
  21. Y. Jia, D. Xu, J. Zhou, C. Wei, and J. Sun, Optik, 206, 164363 (2020). [https://doi.org/10.1016/j.ijleo.2020.164363]
  22. L. Zhang, J. Che, Y. Ma, J. Wang, R. Kang, B. Deng, R. Yu, and H. Geng, J. Lumin., 225, 117374 (2020). [DOI: https://doi.org/10.1016/j.jlumin.2020.117374]
  23. B. Devakumar, H. Guo, Y. J. Zeng, and X. Huang, Dyes Pigm., 157, 72 (2018). [DOI: https://doi.org/10.1016/j.dyepig.2018.04.042]