초록
골다공증은 주로 노인에서 나타나는 질병으로써 뼈 질량 및 조직의 구조적 악화에 따라 골절의 위험을 증가시킨다. 본 연구의 목적은 영양소 성분과 골다공증과의 연관성을 파악하고, 영양소 성분을 기반으로 골다공증을 예측하는 모델을 생성 및 평가하는 것이다. 실험방법으로 binary logistic regression을 이용하여 연관성분석을 수행하였고, naive Bayes 알고리즘과 variable subset selection 메소드를 이용하여 예측 모델을 생성하였다. 단일 변수들에 대한 분석결과는 남성에서 식품섭취량과 비타민 B2가 골다공증을 예측하는데 가장 높은 the area under the receiver operating characteristic curve (AUC)값을 나타내었다. 여성에서는 단일불포화지방산이 가장 높은 AUC값을 나타내었다. 여성 골다공증 예측모델에서는 Correlation based feature subset 및 wrapper 기반 feature subset 메소드를 이용하여 생성된 모델이 0.662의 AUC 값을 얻었다. 남성에서 전체변수를 이용한 모델은 0.626의 AUC를 얻었고, 그외 남성 모델들에서는 민감도와 1-특이도에서 예측 성능이 매우 낮았다. 이러한 연구결과는 향후 골다공증 치료 및 예방을 위한 기반정보로 활용할수 있을 것으로 기대된다.
Osteoporosis is a disease that occurs mainly in the elderly and increases the risk of fractures due to structural deterioration of bone mass and tissues. The purpose of this study are to assess the relationship between nutritional components and osteoporosis and to evaluate models for predicting osteoporosis based on nutrient components. In experimental method, association was performed using binary logistic regression, and predictive models were generated using the naive Bayes algorithm and variable subset selection methods. The analysis results for single variables indicated that food intake and vitamin B2 showed the highest value of the area under the receiver operating characteristic curve (AUC) for predicting osteoporosis in men. In women, monounsaturated fatty acids showed the highest AUC value. In prediction model of female osteoporosis, the models generated by the correlation based feature subset and wrapper based variable subset methods showed an AUC value of 0.662. In men, the model by the full variable obtained an AUC of 0.626, and in other male models, the predictive performance was very low in sensitivity and 1-specificity. The results of these studies are expected to be used as the basic information for the treatment and prevention of osteoporosis.