DOI QR코드

DOI QR Code

Prediction model of osteoporosis using nutritional components based on association

연관성 규칙 기반 영양소를 이용한 골다공증 예측 모델

  • 유정훈 (한국한의학연구원 미래의학부) ;
  • 이범주 (한국한의학연구원 미래의학부)
  • Received : 2020.07.27
  • Accepted : 2020.08.15
  • Published : 2020.08.31

Abstract

Osteoporosis is a disease that occurs mainly in the elderly and increases the risk of fractures due to structural deterioration of bone mass and tissues. The purpose of this study are to assess the relationship between nutritional components and osteoporosis and to evaluate models for predicting osteoporosis based on nutrient components. In experimental method, association was performed using binary logistic regression, and predictive models were generated using the naive Bayes algorithm and variable subset selection methods. The analysis results for single variables indicated that food intake and vitamin B2 showed the highest value of the area under the receiver operating characteristic curve (AUC) for predicting osteoporosis in men. In women, monounsaturated fatty acids showed the highest AUC value. In prediction model of female osteoporosis, the models generated by the correlation based feature subset and wrapper based variable subset methods showed an AUC value of 0.662. In men, the model by the full variable obtained an AUC of 0.626, and in other male models, the predictive performance was very low in sensitivity and 1-specificity. The results of these studies are expected to be used as the basic information for the treatment and prevention of osteoporosis.

골다공증은 주로 노인에서 나타나는 질병으로써 뼈 질량 및 조직의 구조적 악화에 따라 골절의 위험을 증가시킨다. 본 연구의 목적은 영양소 성분과 골다공증과의 연관성을 파악하고, 영양소 성분을 기반으로 골다공증을 예측하는 모델을 생성 및 평가하는 것이다. 실험방법으로 binary logistic regression을 이용하여 연관성분석을 수행하였고, naive Bayes 알고리즘과 variable subset selection 메소드를 이용하여 예측 모델을 생성하였다. 단일 변수들에 대한 분석결과는 남성에서 식품섭취량과 비타민 B2가 골다공증을 예측하는데 가장 높은 the area under the receiver operating characteristic curve (AUC)값을 나타내었다. 여성에서는 단일불포화지방산이 가장 높은 AUC값을 나타내었다. 여성 골다공증 예측모델에서는 Correlation based feature subset 및 wrapper 기반 feature subset 메소드를 이용하여 생성된 모델이 0.662의 AUC 값을 얻었다. 남성에서 전체변수를 이용한 모델은 0.626의 AUC를 얻었고, 그외 남성 모델들에서는 민감도와 1-특이도에서 예측 성능이 매우 낮았다. 이러한 연구결과는 향후 골다공증 치료 및 예방을 위한 기반정보로 활용할수 있을 것으로 기대된다.

Keywords

References

  1. Consensus, A. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. The American journal of medicine. 1993;94(6):646-650. doi: 10.1016/0002-9343(93)90218-e.
  2. Kanis, J. A., Melton III, L. J., Christiansen, C., Johnston, C. C., & Khaltaev, N. The diagnosis of osteoporosis. Journal of bone and mineral research. 1994;9(8):1137-1141. https://doi.org/10.1002/jbmr.5650090802
  3. 통계청. 통계청, 2018 고령자 통계, 2018.
  4. Cumming, R. G. Calcium intake and bone mass: a quantitative review of the evidence. Calcified Tissue International. 1990;47(4):194-201. https://doi.org/10.1007/BF02555919
  5. Welten, D. C., Kemper, H. C., Post, G. B., & Van Staveren, W. A. A meta-analysis of the effect of calcium intake on bone mass in young and middle aged females and males. The Journal of nutrition. 1995;125(11):2802-2813.
  6. New, S. A., Robins, S. P., Campbell, M. K., Martin, J. C., Garton, M. J., Bolton-Smith, C., & Reid, D. M. Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health?. The American journal of clinical nutrition. 2000;71(1):142-151. doi: 10.1093/ajcn/71.1.142.
  7. Hannan, Marian T., Katherine L. Tucker, Bess Dawson‐Hughes, L. Adrienne Cupples, David T. Felson, & Douglas P. Kiel. Effect of dietary protein on bone loss in elderly men and women: the Framingham Osteoporosis Study. Journal of bone and mineral research. 2000;15(12):2504-2512. doi: 10.1359/jbmr.2000.15.12.2504.
  8. Ooms, M. E., Roos, J. C., Bezemer, P. D., Van Der Vijgh, W. J., Bouter, L. M., & Lips, P. A. U. L. Prevention of bone loss by vitamin D supplementation in elderly women: a randomized double-blind trial. The Journal of Clinical Endocrinology & Metabolism. 1995;80(4):1052-1058. doi: 10.1210/jcem.80.4.7714065.
  9. Cohen, A. J., & Roe, F. J. C. Review of risk factors for osteoporosis with particular reference to a possible aetiological role of dietary salt. Food and Chemical Toxicology. 2000;38(2-3):237-253. doi: 10.1016/s0278-6915(99)00145-3.
  10. Prentice, A. Is nutrition important in osteoporosis?. Proceedings of the Nutrition Society. 1997;56(1B):357-367. doi: https://doi.org/10.1079/PNS19970038.
  11. 보건복지부. 2015 한국인 영양소 섭취기준. 2015
  12. Dawson-Hughes, B., Harris, S. S., Krall, E. A., & Dallal, G. E. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. New England Journal of Medicine. 1997;337(10):670-676. doi: 10.1056/NEJM199709043371003.
  13. Ordonez, C., Matias, J. M., de Cos Juez, J. F., & Garcia, P. J. Machine learning techniques applied to the determination of osteoporosis incidence in post-menopausal women. Mathematical and Computer Modelling. 2009;50(5-6):673-679. https://doi.org/10.1016/j.mcm.2008.12.024
  14. de Cos Juez, F. J., Suárez-Suárez, M. A., Lasheras, F. S., & Murcia-Mazon, A. Application of neural networks to the study of the influence of diet and lifestyle on the value of bone mineral density in post-menopausal women. Mathematical and computer modelling. 2011;54(7-8):1665-1670. https://doi.org/10.1016/j.mcm.2010.11.069
  15. Bum Ju Lee. Prediction model of hypercholesterolemia using body fat mass based on machine learning. The Journal of the Convergence on Culture Technology. 2019;5(4):413-420 . https://doi.org/10.17703/JCCT.2019.5.4.413
  16. Seung Hyeog Moon. A Study on Securing Global Big Data Competitiveness based on its Environment Analysis. The Journal of the Convergence on Culture Technology. 2019;5(2):361-366. https://doi.org/10.17703/JCCT.2019.5.2.361