DOI QR코드

DOI QR Code

Low cost, highly sensitive and selective electrochemical detection of arsenic (III) using silane grafted based nanocomposite

  • Lalmalsawmi, Jongte (Department of Chemistry, School of Physical Science, Mizoram University) ;
  • Zirlianngura, Zirlianngura (Department of Chemistry, School of Physical Science, Mizoram University) ;
  • Tiwari, Diwakar (Department of Chemistry, School of Physical Science, Mizoram University) ;
  • Lee, Seung-Mok (Department of Environmental Engineering, Catholic Kwandong University)
  • Received : 2019.06.12
  • Accepted : 2019.08.12
  • Published : 2020.08.31

Abstract

Novel silane grafted bentonite was obtained using the natural bentonite as precursor material. The material which is termed as nanocomposite was characterized by the Fourier Transform Infra-red (FT-IR) and X-ray diffraction (XRD) methods. The surface imaging and elemental mapping was performed using Scanning Electron Microscopic (SEM/EDX) technique. The electroanalytical studies were performed using the nanocomposite electrode. The electroactive surface area of nanocomposite electrode was significantly increased than the pristine bentonite or bare carbon paste based working electrode. The impedance spectroscopic studies were conducted to simulate the equivalent circuit and Nyquist plots were drawn for the carbon paste electrode and nanocomposite electrodes. A single step oxidation/reduction process occurred for As(III) having ΔE value 0.36 V at pH 2.0. The anodic stripping voltammetry was performed for concentration dependence studies of As(III) (0.5 to 20.0 ㎍/L) and reasonably a good linear relationship was obtained. The detection limit of the As(III) detection was calculated as 0.00360±0.00002 ㎍/L having with observed relative standard deviations (RSD) less than 4%. The presence of several cations and anions has not affected the detection of As(III) however, the presence of Cu(II) and Mn(II) affected the detection of As(III). The selectivity of As(III) was achieved using the Tlawng river water sample spiked with As(III).

Keywords

References

  1. Kumara S, Bhanjana G, Dilbaghi N, Kumar R, Umar A. Fabrication and characterization of highly sensitive and selectivearsenic sensor based on ultra-thin graphene oxide nanosheets. Sen. Actuat. B: Chem. 2016;227:29-34. https://doi.org/10.1016/j.snb.2015.11.101
  2. Liu Y, Huang Z, Xie Q, et al. Electrodeposition of electro reduced graphene oxide-Au nanoparticles composite film at glassy carbon electrode for anodic stripping voltammetric analysis of trace arsenic(III). Sens. Actuat. B: Chem. 2013;188:894-901. https://doi.org/10.1016/j.snb.2013.07.113
  3. Shukla S, Chaudhary S, Umar A, Chaudhary GR, Mehta SK. Tungsten oxide($WO_3$) nanoparticles as scaffold for the fabrication of hydrazine chemical sensor. Sens. Actuat. B: Chem. 2014;196:231-237. https://doi.org/10.1016/j.snb.2014.02.016
  4. Fang H, Zhang J, Zhou S, et al. Submonolayer deposition on glassy carbon electrode for anodic stripping voltammetry: an ultra-sensitive method for antimony in tap water. Sens. Actuat. B: Chem. 2015;210:113-119. https://doi.org/10.1016/j.snb.2014.12.093
  5. Trachioti MG, Karantzalis AE, Hrbac J, Prodromidis MI. Low-cost screen-printed sensors on-demand: Instantly prepared sparked gold nanoparticles from eutectic Au/Si alloy for the determination of arsenic at the sub-ppb level. Sens. Actuat. B: Chem. 2019;281:273-280. https://doi.org/10.1016/j.snb.2018.10.112
  6. Shrivas K, Shankar R, Dewangan K. Gold nanoparticles as a localized surface plasmon resonance based chemical sensor for on-site colorimetric detection of arsenic in water samples. Sens. Actuat. B: Chem. 2015;220:1376-1383. https://doi.org/10.1016/j.snb.2015.07.058
  7. Song L, Mao K, Zhou X, Hu J. A novel biosensor based on Au@Ag core-nanoparticles for SERS detection of arsenic (III). Talanta. 2016;146:285-290. https://doi.org/10.1016/j.talanta.2015.08.052
  8. Chakraborti D, Rahman MM, Ahamed S, Dutta RN, Pati S, Mukherjee SC. Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere 2016;152:520-529. https://doi.org/10.1016/j.chemosphere.2016.02.119
  9. B.K. Mandal, K.T. Suzuki. Arsenic round the world: A review. Talanta. 2002;58:201-235. https://doi.org/10.1016/S0039-9140(02)00268-0
  10. Zhou G, Pu H, Chang J, Sui X, Mao S, Chen J. Real-time electronic sensor based on black phosphorus/Au NPs/DTT hybrid structure:Application in arsenic detection. Sens. Actuat. B: Chem. 2018;257:214-219. https://doi.org/10.1016/j.snb.2017.10.132
  11. Mohan D, Pittman Jr CU. Arsenic removal from water/wastewater using adsorbents - A critical review. J. Hazard. Mater. 2007;142:1-53. https://doi.org/10.1016/j.jhazmat.2007.01.006
  12. Liu ZG, Huang XJ. Voltammetric determination of inorganic arsenic. Trends Anal. Chem. 2014;60:25-35. https://doi.org/10.1016/j.trac.2014.04.014
  13. Sadrolhosseini AR, Naseri M, Kamari HM. Surface Plasmon resonance sensor for detecting of arsenic in aqueous solution using poly pyrrole-chitosan-cobalt ferrite nano particles composite layer. Opt. Commun. 2017;383:132-137. https://doi.org/10.1016/j.optcom.2016.08.065
  14. Shrivas K, Shankar R, Dewangan K. Gold nanoparticles as a localized surface plasmon resonance based chemical sensor for on-site colorimetric detection of arsenic in water samples. Sens. Actuat. B: Chem. 2015;220:1376-1383. https://doi.org/10.1016/j.snb.2015.07.058
  15. Forzani ES, Foley K, Westerhoff P, Tao N. Detection of arsenic in groundwater using a surface plasmon resonance sensor. Sens. Actuat. B: Chem. 2007;123:82-88. https://doi.org/10.1016/j.snb.2006.07.033
  16. Kempahanumakkagari S, Deep A, Kim KH, Kailasa SK, Yoon HO. Nanomaterial-based electrochemical sensors for arsenic - A review. Biosensors Bioelectronics. 2017;95:106-116. https://doi.org/10.1016/j.bios.2017.04.013
  17. Guo Z, Yang M, Huang XJ. Recent developments in electrochemical determination of arsenic. Curr. Opinion Electrochem. 2017;3:130-136. https://doi.org/10.1016/j.coelec.2017.08.002
  18. Gumpu MB, Mani GK, Nesakumar N, Kulandaisamy AJ, Babu KJ, Rayappan JBB. Electrocatalytic nanocauliflower structured fluorine doped CdO thin film as a potential arsenic sensor. Sens. Actuat. B: Chem. 2016;234:426-434. https://doi.org/10.1016/j.snb.2016.05.011
  19. Zhou C, Yang M, Li SS, et al. Electrochemically etched gold wire microelectrode for the determination of inorganic arsenic. Electrochim. Acta. 2017;231:238-246. https://doi.org/10.1016/j.electacta.2017.01.184
  20. Ndlovu T, Mamba BB, Sampath S, Krause RW, Arotiba OA. Voltammetric detection of arsenic on a bismuth modified exfoliated graphite electrode. Electrochim. Acta. 2014;128:48-53. https://doi.org/10.1016/j.electacta.2013.08.084
  21. Yang M, Guo Z, Li LN, et al. Electrochemical determination of arsenic(III) with ultra-high anti-interference performance using Au-Cu bimetallic nanoparticles. Sens. Actuat. B: Chem. 2016;231:70-78. https://doi.org/10.1016/j.snb.2016.03.009
  22. Abeywardena SBY, Perera S, de Silva KMN, Tissera NP. A facile method to modify bentonite nanoclay with silane. Int. Nano Lett. 2017;7:237-241. https://doi.org/10.1007/s40089-017-0214-2
  23. Jovic-Jovicic N, Milutinovic-Nikolic A, Bankovic P, et al. Synthesis, characterization and adsorptive properties of organo-bentonites. Acta Physica Polonica A. 2010;117:849-854. https://doi.org/10.12693/APhysPolA.117.849
  24. Warchol J,Misaelides P, Petrus R, Zamboulis D. Preparation and application of organo-modified zeolitic material in the removal of chromates and iodides. J. Hazard. Mat. B. 2006;137:1410-1416. https://doi.org/10.1016/j.jhazmat.2006.04.028
  25. Madejova J, Komadel P. Baseline studies of the clay minerals society source clays. Clays Clay Miner. 2001;49:410-432. https://doi.org/10.1346/CCMN.2001.0490508
  26. Sacco A. Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renew. Sust. Energy Rev. 2017;79:814-829. https://doi.org/10.1016/j.rser.2017.05.159
  27. Lakhe MG, Rohom AB, Londhe PU, Bhand GR, Chaure NB. Study of photoelectrochemical conductivity mechanism and electrochemical impedance spectroscopy of bulk CuInTe2 -Electrolyte interface. J. Surf. 2018;12:202-212.
  28. Miao P, Wang BD, Han K, Tang YG. Electrochemical impedance spectroscopy study of proteolysis using unmodified gold nanoparticles. Electrochem. Commun. 2014;47:21-24. https://doi.org/10.1016/j.elecom.2014.07.013
  29. Gu H, Yang Y, Chen F, et al. Electrochemical detection of arsenic contamination based on hybridization chain reaction and Rec Jf exonuclease-mediated amplification. Chem. Eng. J. 2018;353:305-310. https://doi.org/10.1016/j.cej.2018.07.137
  30. Lee SM, Zirlianngura, Anjudikkal J, Tiwari D. Electrochemical sensor for trace determination of cadmium(II) from aqueous solutions: Use of hybrid materials precursors to natural clays. Int. J. Environ. Anal. Chem. 2016;96:490-504. https://doi.org/10.1080/03067319.2016.1172220
  31. Tiwari D, Zirlianngura, Lee SM. Fabrication of efficient and selective total arsenic sensor using the hybrid materials modified carbon paste electrodes. J. Electroanal. Chem. 2017;784:109-114. https://doi.org/10.1016/j.jelechem.2016.11.051
  32. Salinas-torres, Huerta F, Montilla F, Morallon E. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes. Electrochim. Acta. 2011;56:2464-2470. https://doi.org/10.1016/j.electacta.2010.11.023
  33. Loucka T. The adsorption, oxidation and reduction of arsenious acid on gold and platinum electrodes. J. Electroanal. Chem. Interfacial Chem. 1973;47:103-108. https://doi.org/10.1016/S0022-0728(73)80349-3
  34. Xiao L, Wildgoose GG, Compton RG. Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. Anal. Chim. Acta. 2008;620:44-49. https://doi.org/10.1016/j.aca.2008.05.015
  35. Lalhmunsiama, Tiwari D, Lee SM. Activated carbon and manganese coated activated carbon precursor to dead biomass in the remediation of arsenic contaminated water. Environ. Eng. Res. 2012;17:S41-S48. https://doi.org/10.4491/eer.2012.17.1.041
  36. Lee SM, Lalhmunsiama L, Thanhmingliana, Tiwari D. Porous hybrid materials in the remediation of water contaminated with As(III) and As(V). Chem. Eng. J. 2015;270:496-507. https://doi.org/10.1016/j.cej.2015.02.053
  37. Saha J, Roy AD, Dey D, Nath J, Bhattacharjee D, Hussain SA. Development of arsenic(v) sensor based on fluorescence resonance energy transfer. Sens. Actuat. B. 2017;241:1014-1023. https://doi.org/10.1016/j.snb.2016.10.098
  38. Ramesha GK, Sampath S. In-situ formation of graphene-lead oxide composite and its use in trace arsenic detection. Sens. Actuat. B: Chem. 2011;160:306-311. https://doi.org/10.1016/j.snb.2011.07.053
  39. Vandenhecke J, Waeles M, Riso RD, Corre PL. A stripping chrono-potentiometric (SCP) method with a gold film electrode for determining inorganic arsenic species in seawater. Anal. Bioanal. Chem. 2007;388:929-937. https://doi.org/10.1007/s00216-007-1284-1
  40. Simm AO, Banks CE, Wilkins SJ, Karousos NG, Davis J, Compton RG. A comparison of different types of gold-carbon composite electrode for detection of arsenic (III). Anal. Bioanal. Chem. 2005;381:979-985. https://doi.org/10.1007/s00216-004-2960-z
  41. Mafa JP, Mabuba N, Arotiba OA. An exfoliated graphite based electrochemical sensor for As(III) in water. Electroanalysis 2016;28:1462-1469. https://doi.org/10.1002/elan.201501107
  42. Feeney R, Kounaves SP. On-site analysis of arsenic in groundwater using a microfabricated gold ultramicroelectrode array. Anal. Chem. 2000;72:2222-2228. https://doi.org/10.1021/ac991185z

Cited by

  1. Bio-Composite Materials Precursor to Chitosan in the Development of Electrochemical Sensors: A Critical Overview of Its use with Micro-Pollutants and Heavy Metals Detection vol.31, pp.3, 2020, https://doi.org/10.14478/ace.2020.1034
  2. Electrochemical Detection of Arsenite Using a Silica Nanoparticles-Modified Screen-Printed Carbon Electrode vol.13, pp.14, 2020, https://doi.org/10.3390/ma13143168
  3. Facile Synthesized Novel Nanocomposites Modified Electrodes in the Trace Detection of Sulfamethoxazole vol.168, pp.12, 2021, https://doi.org/10.1149/1945-7111/ac3ab5