DOI QR코드

DOI QR Code

Analysis of the Corrosion Behavior According to the Characteristics of Sigma Phase Formed in Super Austenitic Stainless Steel

슈퍼 오스테나이트계 스테인리스강의 시그마상 특성에 따른 부식거동 분석

  • Kim, Ye Eun (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Park, Jin-seong (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Cho, Dong Min (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Hong, Seung Gab (POSCO Technical Research Laboratories) ;
  • Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
  • 김예은 (순천대학교 신소재공학과) ;
  • 박진성 (순천대학교 신소재공학과) ;
  • 조동민 (순천대학교 신소재공학과) ;
  • 홍승갑 (포스코 기술연구원) ;
  • 김성진 (순천대학교 신소재공학과)
  • Received : 2020.07.27
  • Accepted : 2020.08.22
  • Published : 2020.08.31

Abstract

The corrosion behavior of super austenitic stainless steel was studied by examining the characteristics of the sigma phase formed in the steel. A range of experimental and analytical methods was employed, including potentiodynamic polarization tests, critical pitting temperature tests, transmission electron microscopy, and energy-dispersive spectroscopy. Three steel samples with different sigma phase levels were obtained by intentionally adjusting the manufacturing process. The results showed that the corrosion resistance of the samples was strongly dependent upon the size and distribution of the sigma phase precipitated in the samples. The larger the size of the sigma phase, the higher the Mo content in the sigma phase and the higher the depletion level of Mo at the interface between the matrix/sigma phase, the more samples with a coarse-sized sigma phase were susceptible to localized pitting corrosion at the interface. These results suggest that various manufacturing processes, such as welding and the post-heat treatment of the steel, should be optimized so that both the size and fraction of the sigma phase precipitated in the steel are small to improve the resistance to localized corrosion.

Keywords

References

  1. L. Adamson and N. Brown, Sulphur 2020 implementation - IMO issues additional guidance, www.imo.org (2019). http://www.imo.org/en/MediaCentre/PressBriefings/Pages/10-MEPC-74-sulphur-2020.aspx
  2. H.Ulpre and I. Eames, Mar. Pollut. Bull., 88, 292 (2014). https://doi.org/10.1016/j.marpolbul.2014.08.027
  3. S. Nishimura and M. Yoda, Water. Sci. Technol., 36, 349 (1997). https://doi.org/10.2166/wst.1997.0610
  4. W. Heinrich, K. J. Marquardt, and A. J. Schaefer, SAE. Transactions, 95, 998 (1986). https://www.jstor.org/stable/44718176
  5. M. B. Chang, H. M. Lee, F. Wu, and C. R. Lai, J. Air. Waste Manage., 54, 941 (2004). https://doi.org/10.1080/10473289.2004.10470965
  6. R. Wolfson, Energy, Environment and Climate, 2nd ed., p. 435, W. W. Norton & Company, New York (2012).
  7. Y. S. Zhang, X. M. Zhu, and S. H. Zhong, Corros. Sci., 46, 853 (2004). https://doi.org/10.1016/j.corsci.2003.09.002
  8. C. O. A. Olsson and D. Landolt, Electrochim. Acta, 48, 1093 (2003). https://doi.org/10.1016/S0013-4686(02)00841-1
  9. V. Maurice, W. P. Yang, and P. Marcus, J. Electrochem. Soc., 145, 909 (1998). https://doi.org/10.1149/1.1838366
  10. A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, and E. Matykina, Corros. Sci., 50, 1796 (2008). https://doi.org/10.1016/j.corsci.2008.04.005
  11. S. J. Kim, S. G. Hong, and M. S. Oh, J. Mater. Res., 32, 1343 (2017). https://doi.org/10.1557/jmr.2017.65
  12. P. Sathiya, M. K. Mishra, R. Soundararajan, and B. Shanmugarajan, Opt. Laser. Technol., 45, 46 (2013). https://doi.org/10.1016/j.optlastec.2012.07.035
  13. S. Heino, E. M. K. Wedel, and B. Karlsson, J. Mater. Sci. Tech., 15, 101 (1999). https://doi.org/10.1179/026708399773003376
  14. J. K. Shin, H. J. Jang, K. W. Cho, and C. J. Park, Corros. Sci., 69, 364 (2013). https://doi.org/10.5006/0723
  15. G. S Jeong, I. S. Lee, and S. T. Kim, Corros. Sci. Tech., 19, 146, (2020). https://doi.org/10.14773/cst.2020.19.3.146
  16. R. T. Loto, C. A. Loto, and I. Ohijeagbon, Results Phys., 11, 570 (2018). https://doi.org/10.1016/j.rinp.2018.09.056
  17. J. B. Lee, N. Kang, J. T. Park, S. T. Ahn, Y. D. Park, I. D. Choi, K. R. Kim, and K. M. Cho, Mater. Chem. Phys., 129, 365 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.026
  18. A. N. Isfahany, H. Saghafian, and G. Borhani, J. Alloy. Compd., 509, 3931 (2011). https://doi.org/10.1016/j.jallcom.2010.12.174
  19. Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P. D. Hodgson, and D. Fabijanic, Scripta. Mater., 141, 94 (2017). https://doi.org/10.1016/j.scriptamat.2017.07.037
  20. X. Chen, J. Li, X. Cheng, H. Wang, and Z. Huang, Mater. Sci. Eng. A-Struct., 715, 307 (2018). https://doi.org/10.1016/j.msea.2017.10.002
  21. H. S. Choi, S. M. Kim, H. K. Sung, S. J. Kim, and S. S. Kim, Korean. J. Met. Mater., 57, 624, (2019). http://dx.doi.org/10.3365/KJMM.2019.57.10.624
  22. J. Wang, Y. Cui, J. Bai, N. Dong, Y. Liu, C. Zhang, and P. Han, Mater. Lett., 252, 60 (2019). https://doi.org/10.1016/j.matlet.2019.05.107
  23. J. Bai, Y. Cui, J. Wang, N. Dong, M. S. Qurashi, H. Wei, Y. Yang, and P. Han, Metals, 8, 497 (2018). https://doi.org/10.3390/met8070497
  24. D. H. Ko and Y. T. Shin, J. Weld. Join., 36, 8, (2018). https://doi.org/10.5781/JWJ.2018.36.6.2
  25. J. Bai, Y. Cui, J. Wang, N. Dong, M. S. Qurashi, H. Wei, Y. Yang, and P. Han, J. Iron Steel Res. Int., 26, 712 (2019). https://doi.org/10.1007/s42243-018-0194-0
  26. G. Argandona, J. F. Palacio, C. Berlanga, M. V. Biezma, P. J. Rivero, J. Pena, and R. Rodriguez, Metals, 7, 2019 (2017). https://doi.org/10.3390/met7060219
  27. ASTM G48-03, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, ASTM International (2003). http://doi.org/10.1520/G0048-03
  28. ASTM G150-99, Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels, ASTM International (2004). http://doi.org/10.1520/G0150-99R04
  29. G. Rondelli, B. Vicentini, and A. Cigada, Meter. Corros., 46, 628 (1995). https://doi.org/10.1002/maco.19950461104
  30. T. Rahman, W. L. Ebert, and E. Indacochea, Corros. Eng. Sci. Techn., 53, 226 (2018). https://doi.org/10.1080/1478422X.2018.1443991
  31. R. Marin, H. Combeau, J. Zollinger, M. Dehmas, B. Rouat, A. Lamontagne, N. Loukachenko, and L. L. Robert, Metall. Mater. Trans. A, 51, 3526 (2020). https://doi.org/10.1007/s11661-020-05794-1
  32. D. C. Santos, R. Magnabosco, and C. M. Neto, Corros. Sci., 69, 900 (2013). https://doi.org/10.5006/0768
  33. J. Ding, E. H. Han, Z. Zhang, S. Wang, and J. Wang, Mater. High. Temp., 34, 78 (2017). http://doi.org/10.1080/09603409.2016.1245470
  34. L. Pezzato, M. Lago, K. Brunelli, M. Breda, E. Piva, and I. Calliari, Mater. Sci. Forum, 879, 1495 (2016). https://doi.org/10.4028/www.scientific.net/MSF.879.1495
  35. C. C. Hsieh and W. Wu, ISRN Metall., 2012, Article ID 732471, 1 (2012). https://doi.org/10.5402/2012/732471
  36. P. I. Marshall and T. G. Gooch, Corros. Eng., 49, 514 (1993). https://doi.org/10.5006/1.3316080
  37. S. Sathiyanarayanan, C. Marikkannu, P. B. Srinivasan, and V. Muthupandi, Anti-Corros. Methods Mater., 49, 33 (2002). https://doi.org/10.1108/0003559021043584
  38. H. Li, Z. Jiang, H. Feng, S. Zhang, P. Han, W. Zhang, G. Li, and G. Fan, Int. J. Electrochem. Sci., 10, 4832 (2015). http://www.electrochemsci.org