DOI QR코드

DOI QR Code

Antibody-secreting macrophages generated using CpG-free plasmid eliminate tumor cells through antibody-dependent cellular phagocytosis

  • Cha, Eun Bi (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Shin, Keun Koo (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Seo, Jinho (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Oh, Doo-Byoung (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 투고 : 2020.02.05
  • 심사 : 2020.02.28
  • 발행 : 2020.08.31

초록

The non-viral delivery of genes into macrophages, known as hard-to-transfect cells, is a challenge. In this study, the microporation of a CpG-free and small plasmid (pCGfd-GFP) showed high transfection efficiency, sustainable transgene expression, and good cell viability in the transfections of Raw 264.7 and primary bone marrow-derived macrophages. The non-viral method using the pCGfd vector encoding anti-EGFR single-chain Fv fused with Fc (scFv-Fc) generated the macrophages secreting anti-EGFR scFv-Fc. These macrophages effectively phagocytized tumor cells expressing EGFR through the antibody-dependent mechanism, as was proved by experiments using EGFR-knockout tumor cells. Finally, peri-tumoral injections of anti-EGFR scFv-Fc-secreting macrophages were shown to inhibit tumor growth in the xenograft mouse model.

키워드

참고문헌

  1. Leslie M (2018) New cancer-fighting cells enter trials. Science 361, 1056-1057 https://doi.org/10.1126/science.361.6407.1056
  2. Overdijk MB, Verploegen S, Bogels M et al (2015) Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs 7, 311-321 https://doi.org/10.1080/19420862.2015.1007813
  3. Chao MP, Alizadeh AA, Tang C et al (2010) Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699-713 https://doi.org/10.1016/j.cell.2010.07.044
  4. Shi Y, Fan X, Deng H et al (2015) Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with Fcgamma receptors on macrophages. J Immunol 194, 4379-4386 https://doi.org/10.4049/jimmunol.1402891
  5. Kurdi AT, Glavey SV, Bezman NA et al (2018) Antibody-Dependent Cellular Phagocytosis by Macrophages is a Novel Mechanism of Action of Elotuzumab. Mol Cancer Ther 17, 1454-1463 https://doi.org/10.1158/1535-7163.MCT-17-0998
  6. Michaud HA, Eliaou JF, Lafont V, Bonnefoy N and Gros L (2014) Tumor antigen-targeting monoclonal antibody-based immunotherapy: Orchestrating combined strategies for the development of long-term antitumor immunity. Oncoimmunology 3, e955684 https://doi.org/10.4161/21624011.2014.955684
  7. Lee S, Kivimae S, Dolor A and Szoka FC (2016) Macrophage-based cell therapies: The long and winding road. J Control Release 240, 527-540 https://doi.org/10.1016/j.jconrel.2016.07.018
  8. Genard G, Lucas S and Michiels C (2017) Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo- and Immunotherapies. Front Immunol 8, 828 https://doi.org/10.3389/fimmu.2017.00828
  9. Engelman A (2005) The ups and downs of gene expression and retroviral DNA integration. Proc Natl Acad Sci U S A 102, 1275-1276 https://doi.org/10.1073/pnas.0409587101
  10. Shayakhmetov DM, Gaggar A, Ni S, Li ZY and Lieber A (2005) Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 79, 7478-7491 https://doi.org/10.1128/JVI.79.12.7478-7491.2005
  11. Zhang X, Edwards JP and Mosser DM (2009) The expression of exogenous genes in macrophages: obstacles and opportunities. Methods Mol Biol 531, 123-143 https://doi.org/10.1007/978-1-59745-396-7_9
  12. Hardee CL, Arevalo-Soliz LM, Hornstein BD and Zechiedrich L (2017) Advances in Non-Viral DNA Vectors for Gene Therapy. Genes (Basel) 8, 65 https://doi.org/10.3390/genes8020065
  13. Mun JY, Shin KK, Kwon O, Lim YT and Oh DB (2016) Minicircle microporation-based non-viral gene delivery improved the targeting of mesenchymal stem cells to an injury site. Biomaterials 101, 310-320 https://doi.org/10.1016/j.biomaterials.2016.05.057
  14. Latz E, Schoenemeyer A, Visintin A et al (2004) TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 5, 190-198 https://doi.org/10.1038/ni1028
  15. Hyde SC, Pringle IA, Abdullah S et al (2008) CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol 26, 549-551 https://doi.org/10.1038/nbt1399
  16. Lesina E, Dames P, Flemmer A et al (2010) CpG-free plasmid DNA prevents deterioration of pulmonary function in mice. Eur J Pharm Biopharm 74, 427-434 https://doi.org/10.1016/j.ejpb.2009.11.013
  17. Lesina E, Dames P and Rudolph C (2010) The effect of CpG motifs on gene expression and clearance kinetics of aerosol administered polyethylenimine (PEI)-plasmid DNA complexes in the lung. J Control Release 143, 243-250 https://doi.org/10.1016/j.jconrel.2010.01.003
  18. Pringle IA, Hyde SC, Connolly MM et al (2012) CpG-free plasmid expression cassettes for cystic fibrosis gene therapy. Biomaterials 33, 6833-6842 https://doi.org/10.1016/j.biomaterials.2012.06.009
  19. Mann CJ, Anguela XM, Montane J et al (2012) Molecular signature of the immune and tissue response to non-coding plasmid DNA in skeletal muscle after electrotransfer. Gene Ther 19, 1177-1186 https://doi.org/10.1038/gt.2011.198
  20. Yew NS, Zhao H, Przybylska M et al (2002) CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol Ther 5, 731-738 https://doi.org/10.1006/mthe.2002.0598
  21. Hodges BL, Taylor KM, Joseph MF, Bourgeois SA and Scheule RK (2004) Long-term transgene expression from plasmid DNA gene therapy vectors is negatively affected by CpG dinucleotides. Mol Ther 10, 269-278 https://doi.org/10.1016/j.ymthe.2004.04.018
  22. Morrissey MA, Williamson AP, Steinbach AM et al (2018) Chimeric antigen receptors that trigger phagocytosis. eLife 7, e36688 https://doi.org/10.7554/eLife.36688
  23. Mosaad YM (2014) Hematopoietic stem cells: an overview. Transfus Apher Sci 51, 68-82 https://doi.org/10.1016/j.transci.2014.10.016
  24. Piechaczek C, Fetzer C, Baiker A, Bode J and Lipps HJ (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res 27, 426-428 https://doi.org/10.1093/nar/27.2.426
  25. Ramezani A, Hawley TS and Hawley RG (2003) Performance- and safety-enhanced lentiviral vectors containing the human interferon-beta scaffold attachment region and the chicken beta-globin insulator. Blood 101, 4717-4724 https://doi.org/10.1182/blood-2002-09-2991
  26. Schubeler D, Mielke C, Maass K and Bode J (1996) Scaffold/matrix-attached regions act upon transcription in a context-dependent manner. Biochemistry 35, 11160-11169 https://doi.org/10.1021/bi960930o
  27. Giannakopoulos A, Stavrou EF, Zarkadis I, Zoumbos N, Thrasher AJ and Athanassiadou A (2009) The functional role of S/MARs in episomal vectors as defined by the stressinduced destabilization profile of the vector sequences. J Mol Biol 387, 1239-1249 https://doi.org/10.1016/j.jmb.2009.02.043
  28. Stacey KJ, Ross IL and Hume DA (1993) Electroporation and DNA-dependent cell death in murine macrophages. Immunol Cell Biol 71 ( Pt 2), 75-85 https://doi.org/10.1038/icb.1993.8
  29. Rupprecht AP and Coleman DL (1991) Transfection of adherent murine peritoneal macrophages with a reporter gene using DEAE-dextran. J Immunol Methods 144, 157-163 https://doi.org/10.1016/0022-1759(91)90082-Q
  30. Thompson CD, Frazier-Jessen MR, Rawat R, Nordan RP and Brown RT (1999) Evaluation of methods for transient transfection of a murine macrophage cell line, RAW 264.7. Biotechniques 27, 824-826, 828-830, 832 https://doi.org/10.2144/99274rr05
  31. Shin DM, Yang CS, Yuk JM et al (2008) Mycobacterium abscessus activates the macrophage innate immune response via a physical and functional interaction between TLR2 and dectin-1. Cell Microbiol 10, 1608-1621 https://doi.org/10.1111/j.1462-5822.2008.01151.x