DOI QR코드

DOI QR Code

Crystal Structure of Cytochrome cL from the Aquatic Methylotrophic Bacterium Methylophaga aminisulfidivorans MPT

  • Ghosh, Suparna (Department of Cellular and Molecular Medicine, Chosun University School of Medicine) ;
  • Dhanasingh, Immanuel (Department of Cellular and Molecular Medicine, Chosun University School of Medicine) ;
  • Ryu, Jaewon (Department of Energy Convergence, Graduate School of Chosun University) ;
  • Kim, Si Wouk (Department of Environmental Engineering, Chosun University) ;
  • Lee, Sung Haeng (Department of Cellular and Molecular Medicine, Chosun University School of Medicine)
  • Received : 2020.06.18
  • Accepted : 2020.07.01
  • Published : 2020.08.28

Abstract

Cytochrome cL (CytcL) is an essential protein in the process of methanol oxidation in methylotrophs. It receives an electron from the pyrroloquinoline quinone (PQQ) cofactor of methanol dehydrogenase (MDH) to produce formaldehyde. The direct electron transfer mechanism between CytcL and MDH remains unknown due to the lack of structural information. To help gain a better understanding of the mechanism, we determined the first crystal structure of heme c containing CytcL from the aquatic methylotrophic bacterium Methylophaga aminisulfidivorans MPT at 2.13 Å resolution. The crystal structure of Ma-CytcL revealed its unique features compared to those of the terrestrial homologues. Apart from Fe in heme, three additional metal ion binding sites for Na+, Ca+, and Fe2+ were found, wherein the ions mostly formed coordination bonds with the amino acid residues on the loop (G93-Y111) that interacts with heme. Therefore, these ions seemed to enhance the stability of heme insertion by increasing the loop's steadiness. The basic N-terminal end, together with helix α4 and loop (G126 to Y136), contributed positive charge to the region. In contrast, the acidic C-terminal end provided a negatively charged surface, yielding several electrostatic contact points with partner proteins for electron transfer. These exceptional features of Ma-CytcL, along with the structural information of MDH, led us to hypothesize the need for an adapter protein bridging MDH to CytcL within appropriate proximity for electron transfer. With this knowledge in mind, the methanol oxidation complex reconstitution in vitro could be utilized to produce metabolic intermediates at the industry level.

Keywords

References

  1. Anthony C. 1986. Bacterial oxidation of methane and methanol. Adv. Microb. Physiol. 27: 113-210. https://doi.org/10.1016/S0065-2911(08)60305-7
  2. Pang B, Li MK, Yang S, Yuan TQ, Du GB, Sun RC. 2018. Eco-friendly phenol-urea-formaldehyde Co-condensed resin adhesives accelerated by resorcinol for plywood manufacturing. ACS Omega. 3: 8521-8528. https://doi.org/10.1021/acsomega.8b01286
  3. Anderson DJ, Lidstrom ME. 1988. The moxFG region encodes four polypeptides in the methanol-oxidizing bacterium Methylobacterium sp. strain AM1. J. Bacteriol. 170: 2254-2262. https://doi.org/10.1128/JB.170.5.2254-2262.1988
  4. Anthony C. 1996. Quinoprotein-catalysed reactions. Biochem. J. 320 (Pt 3): 697-711. https://doi.org/10.1042/bj3200697
  5. Anthony C. 1992. The c-type cytochromes of methylotrophic bacteria. Biochim. Biophys. Acta 1099: 1-15. https://doi.org/10.1016/0005-2728(92)90181-Z
  6. Nojiri M, Hira D, Yamaguchi K, Okajima T, Tanizawa K, Suzuki S. 2006. Crystal structures of cytochrome c(L) and methanol dehydrogenase from Hyphomicrobium denitrificans: structural and mechanistic insights into interactions between the two proteins. Biochemistry 45: 3481-3492. https://doi.org/10.1021/bi051877j
  7. Williams P, Coates L, Mohammed F, Gill R, Erskine P, Bourgeois D, et al. 2006. The 1.6A X-ray structure of the unusual c-type cytochrome, cytochrome cL, from the methylotrophic bacterium Methylobacterium extorquens. J. Mol. Biol. 357: 151-162. https://doi.org/10.1016/j.jmb.2005.12.055
  8. Anthony C. 2004. The quinoprotein dehydrogenases for methanol and glucose. Arch. Biochem. Biophys. 428: 2-9. https://doi.org/10.1016/j.abb.2004.03.038
  9. Afolabi PR, Mohammed F, Amaratunga K, Majekodunmi O, Dales SL, Gill R, et al. 2001. Site-directed mutagenesis and X-ray crystallography of the PQQ-containing quinoprotein methanol dehydrogenase and its electron acceptor, cytochrome c(L). Biochemistry 40: 9799-9809. https://doi.org/10.1021/bi002932l
  10. Dales SL, Anthony C. 1995. The interaction of methanol dehydrogenase and its cytochrome electron acceptor. Biochem. J. 312 (Pt 1): 261-265. https://doi.org/10.1042/bj3120261
  11. Moser CC, Page CC, Leslie Dutton P. 2005. Tunneling in PSII. Photochem. Photobiol. Sci. 4: 933-939. https://doi.org/10.1039/b507352a
  12. Myung Choi J, Cao TP, Wouk Kim S, Ho Lee K, Haeng Lee S. 2017. MxaJ structure reveals a periplasmic binding protein-like architecture with unique secondary structural elements. Proteins 85: 1379-1386. https://doi.org/10.1002/prot.25283
  13. Choi JM, Kang JH, Lee DW, Kim SW, Lee SH. 2013. Crystallization and preliminary X-ray crystallographic analysis of MxaJ, a component of the methanol-oxidizing system operon from the marine bacterium Methylophaga aminisulfidivorans MPT. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69: 902-905. https://doi.org/10.1107/S1744309113017983
  14. Kim HG, Doronina NV, Trotsenko YA, Kim SW. 2007. Methylophaga aminisulfidivorans sp. nov., a restricted facultatively methylotrophic marine bacterium. Int. J. Syst. Evol. Microbiol. 57: 2096-2101. https://doi.org/10.1099/ijs.0.65139-0
  15. Kim HG, Han GH, Kim D, Choi JS, Kim SW. 2012. Comparative analysis of two types of methanol dehydrogenase from Methylophaga aminisulfidivorans MPT grown on methanol. J. Basic Microbiol. 52: 141-149. https://doi.org/10.1002/jobm.201000479
  16. Cao TP, Choi JM, Kim SW, Lee SH. 2018. The crystal structure of methanol dehydrogenase, a quinoprotein from the marine methylotrophic bacterium Methylophaga aminisulfidivorans MP(T). J. Microbiol. 56: 246-254. https://doi.org/10.1007/s12275-018-7483-y
  17. Choi JM, Kim HG, Kim JS, Youn HS, Eom SH, Yu SL, et al. 2011. Purification, crystallization and preliminary X-ray crystallographic analysis of a methanol dehydrogenase from the marine bacterium Methylophaga aminisulfidivorans MP(T). Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67: 513-516. https://doi.org/10.1107/S1744309111006713
  18. Williams PA, Coates L, Mohammed F, Gill R, Erskine PT, Coker A, et al. 2005. The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Acta. Crystallogr. D Biol. Crystallogr. 61: 75-79. https://doi.org/10.1107/S0907444904026964
  19. Ghosh M, Anthony C, Harlos K, Goodwin MG, Blake C. 1995. The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 A. Structure 3: 177-187. https://doi.org/10.1016/S0969-2126(01)00148-4
  20. Heldal M, Norland S, Erichsen ES, Sandaa RA, Larsen A, Thingstad F, et al. 2012. $Mg^{2+}$ as an indicator of nutritional status in marine bacteria. ISME J. 6: 524-530. https://doi.org/10.1038/ismej.2011.130
  21. Chen L, Durley RC, Mathews FS, Davidson VL. 1994. Structure of an electron transfer complex: methylamine dehydrogenase, amicyanin, and cytochrome c551i. Science 264: 86-90. https://doi.org/10.1126/science.8140419
  22. Barr I, Guo F. 2015. Pyridine hemochromagen assay for determining the concentration of heme in purified protein solutions. Bio Protoc. 5: e1594.
  23. Bunkoczi G, Echols N, McCoy AJ, Oeffner RD, Adams PD, Read RJ. 2013. Phaser. MRage: automated molecular replacement. Acta Crystallogr. D Biol. Crystallogr. 69: 2276-2286. https://doi.org/10.1107/S0907444913022750
  24. Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66: 486-501. https://doi.org/10.1107/S0907444910007493
  25. Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60: 2126-2132. https://doi.org/10.1107/S0907444904019158
  26. Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67: 355-367. https://doi.org/10.1107/S0907444911001314
  27. Headd JJ, Echols N, Afonine PV, Grosse-Kunstleve RW, Chen VB, Moriarty NW, et al. 2012. Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution. Acta Crystallogr. D Biol. Crystallogr. 68: 381-390. https://doi.org/10.1107/S0907444911047834
  28. Afonine PV, Mustyakimov M, Grosse-Kunstleve RW, Moriarty NW, Langan P, Adams PD. 2010. Joint X-ray and neutron refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 66: 1153-1163. https://doi.org/10.1107/S0907444910026582
  29. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, et al. 2007. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35: W375-383. https://doi.org/10.1093/nar/gkm216
  30. Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, et al. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37: 420-423. https://doi.org/10.1038/s41587-019-0036-z
  31. Schallenberger MA, Niessen S, Shao C, Fowler BJ, Romesberg FE. 2012. Type I signal peptidase and protein secretion in Staphylococcus aureus. J. Bacteriol. 194: 2677-2686. https://doi.org/10.1128/JB.00064-12
  32. Falk JE. 1967. Bond structure in haem compounds. Enzymologia 32: 3-12.
  33. Berry EA, Trumpower BL. 1987. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Anal. Biochem. 161: 1-15. https://doi.org/10.1016/0003-2697(87)90643-9
  34. Simonneaux G, Bondon A. 2005. Mechanism of electron transfer in heme proteins and models: the NMR approach. Chem. Rev. 105: 2627-2646. https://doi.org/10.1021/cr030731s
  35. Takano T, Dickerson RE. 1980. Redox conformation changes in refined tuna cytochrome c. Proc. Natl. Acad. Sci. USA 77: 6371-6375. https://doi.org/10.1073/pnas.77.11.6371
  36. Sigel H. 1984. Metal Ions in Biological Systems: Vol. 17 Calcium and its Role in Biology, pp. 89-92. Ed. CRC Press.
  37. Dahlquist FW, Long JW, Bigbee WL. 1976. Role of calcium in the thermal stability of thermolysin. Biochemistry 15: 1103-1111. https://doi.org/10.1021/bi00650a024
  38. Van Spanning RJ, Wansell CW, De Boer T, Hazelaar MJ, Anazawa H, Harms N, et al. 1991. Isolation and characterization of the moxJ, moxG, moxI, and moxR genes of Paracoccus denitrificans: inactivation of moxJ, moxG, and moxR and the resultant effect on methylotrophic growth. J. Bacteriol. 173: 6948-6961. https://doi.org/10.1128/JB.173.21.6948-6961.1991
  39. Chistoserdov AY, Chistoserdova LV, McIntire WS, Lidstrom ME. 1994. Genetic organization of the mau gene cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J. Bacteriol. 176: 4052-4065. https://doi.org/10.1128/JB.176.13.4052-4065.1994