DOI QR코드

DOI QR Code

Changes in the Microbial Community of the Mottled Skate (Beringraja pulchra) during Alkaline Fermentation

  • Park, Jongbin (Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University) ;
  • Kim, Soo Jin (Department of Animal Life Science, College of Animal Life Sciences, Kangwon National University) ;
  • Kim, Eun Bae (Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University)
  • Received : 2020.03.13
  • Accepted : 2020.05.06
  • Published : 2020.08.28

Abstract

Beringraja pulchra, Cham-hong-eo in Korean, is a mottled skate which is belonging to the cartilaginous fish. Although this species is economically valuable in South Korea as an alkaline-fermented food, there are few microbial studies on such fermentation. Here, we analyzed microbial changes and pH before, during, and after fermentation and examined the effect of inoculation by a skin microbiota mixture on the skate fermentation (control vs. treatment). To analyze microbial community, the V4 regions of bacterial 16S rRNA genes from the skates were amplified, sequenced and analyzed. During the skate fermentation, pH and total number of marine bacteria increased in both groups, while microbial diversity decreased after fermentation. Pseudomonas, which was predominant in the initial skate, declined by fermentation (Day 0: 11.39 ± 5.52%; Day 20: 0.61 ± 0.9%), while the abundance of Pseudoalteromonas increased dramatically (Day 0: 1.42 ± 0.41%; Day 20: 64.92 ± 24.15%). From our co-occurrence analysis, the Pseudoalteromonas was positively correlated with Aerococcaceae (r = 0.638) and Moraxella (r = 0.474), which also increased with fermentation, and negatively correlated with Pseudomonas (r = -0.847) during fermentation. There are no critically significant differences between control and treatment. These results revealed that the alkaline fermentation of skates dramatically changed the microbiota, but the initial inoculation by a skin microbiota mixture didn't show critical changes in the final microbial community. Our results extended understanding of microbial interactions and provided the new insights of microbial changes during alkaline fermentation.

Keywords

References

  1. Kang HW, Jo YR, Kang DY, Jeong GS, Jo HS. 2013. Spawning characteristics and artificial hatching of female mottled skate, Beringraja pulchra in the West Coast of Korea. Dev. Reprod. 17: 247-255. https://doi.org/10.12717/DR.2013.17.3.247
  2. Sarkar PK, Nout MR. 2014. Handbook of indigenous foods involving alkaline fermentation, pp. 224-227. Ed. CRC Press.
  3. Treberg JR, Driedzic WR. 2006. Maintenance and accumulation of trimethylamine oxide by winter skate (Leucoraja ocellata): reliance on low whole animal losses rather than synthesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291: R1790-R1798. https://doi.org/10.1152/ajpregu.00150.2006
  4. Ritchie KB, Schwarz M, Mueller J, Lapacek VA, Merselis D, Walsh CJ, et al. 2017. Survey of antibiotic-producing bacteria associated with the Epidermal Mucus Layers of rays and skates. Front. Microbiol. 8: 1050. https://doi.org/10.3389/fmicb.2017.01050
  5. Kang JH, Park JY, Jo HS. 2012. Rapid development of microsatellite markers with 454 pyrosequencing in a vulnerable fish, the mottled skate, Raja pulchra. Int. J. Mol. Sci. 13: 7199-7211. https://doi.org/10.3390/ijms13067199
  6. Koo OK, Lee SJ, Chung KR, Jang DJ, Yang HJ, Kwon DY. 2016. Korean traditional fermented fish products: jeotgal. J. Ethn. Foods. 3: 107-116. https://doi.org/10.1016/j.jef.2016.06.004
  7. Cho HS, Kim KH. 2008. Quality characteristics of commercial fermented skates. Korean Soc. Food Cult. 23: 297-402.
  8. Bodwell C. 1985. Advance in meat research, pp. 4-15. Ed. AVI, New York.
  9. Skara T, Axelsson L, Stefansson G, Ekstrand B, Hagen H. 2015. Fermented and ripened fish products in the northern European countries. J. Ethn. Foods 2: 18-24. https://doi.org/10.1016/j.jef.2015.02.004
  10. Cho HS, Kim KH. 2008. Quality characteristics of commercial slices of skate Raja kenojei. J. East Asian Soc. Diet Life 18: 214-220.
  11. Lee EJ, Seo JE, Lee JK, Oh SW, Kim YJ. 2008. Microbial and chemical properties of ready-to-eat skate in Korean market. J. Food Hyg. Saf. 23: 137-141.
  12. Jang GI, Kim G, Hwang CY, Cho BC. 2017. Prokaryotic community composition in alkaline-fermented skate (Raja pulchra). Food Microbiol. 61: 72-82. https://doi.org/10.1016/j.fm.2016.08.008
  13. Choi S, Kim SJ, Kim EB. 2019. Complete mitochondrial DNA sequence of Raja pulchra from Yellow Sea and Alaska. Mitochondrial DNA B Resour. 4: 384-385. https://doi.org/10.1080/23802359.2018.1547144
  14. Zhao L, Wang G, Siegel P, He C, Wang H, Zhao W, et al. 2013. Quantitative genetic background of the host influences gut microbiomes in chickens. Sci. Rep. 3: 1163. https://doi.org/10.1038/srep01163
  15. Utama DT, Park J, Kim DS, Kim EB, Lee SK. 2018. Effect of ground chopi (Zanthoxylum piperitum) on physicochemical traits and microbial community of chicken summer sausage during manufacture. Korean J. Food Sci. Anim. Resour. 38: 936-949. https://doi.org/10.5851/kosfa.2018.e26
  16. Han GG, Kim EB, Lee J, Lee J-Y, Jin G, Park J, et al. 2016. Relationship between the microbiota in different sections of the gastrointestinal tract, and the body weight of broiler chickens. Springerplus 5: 911. https://doi.org/10.1186/s40064-016-2604-8
  17. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of highthroughput community sequencing data. Nat. Methods. 7: 335-336. https://doi.org/10.1038/nmeth.f.303
  18. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 5069-5072. https://doi.org/10.1128/AEM.03006-05
  19. Vazquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. 2013. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2: 16. https://doi.org/10.1186/2047-217X-2-16
  20. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31: 814-821. https://doi.org/10.1038/nbt.2676
  21. Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27-30. https://doi.org/10.1093/nar/28.1.27
  22. Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28: 33-36. https://doi.org/10.1093/nar/28.1.33
  23. Faust K, Raes J. 2016. CoNet app: inference of biological association networks using Cytoscape. F1000Res. 5: 1519. https://doi.org/10.12688/f1000research.9050.1
  24. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504. https://doi.org/10.1101/gr.1239303
  25. Lyman J, Fleming RH. 1940. Composition of sea water. J. Mar. Res. 3: 134-146.
  26. Nam Y-D, Chang H-W, Park JR, Kwon H-Y, Quan Z-X, Park Y-H, et al. 2007. Pseudoalteromonas marina sp. nov., a marine bacterium isolated from tidal flats of the Yellow Sea, and reclassification of Pseudoalteromonas sagamiensis as Algicola sagamiensis comb. nov. Int. J. Syst. Evol. Microbiol. 57: 12-18. https://doi.org/10.1099/ijs.0.64523-0
  27. Darabpour E, Ardakani MR, Motamedi H, Ghezelbash G, Ronagh MT. 2010. Isolation of an antibiotic producer Pseudomonas sp. from the Persian Gulf. Asian Pac. J. Tro.p Med. 3: 318-321. https://doi.org/10.1016/S1995-7645(10)60077-6
  28. Park H, Hung YC, Chung D. 2004. Effects of chlorine and pH on efficacy of electrolyzed water for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Int. J. Food Microbiol. 91: 13-18. https://doi.org/10.1016/S0168-1605(03)00334-9
  29. Koziel JA, Frana TS, Ahn H, Glanville TD, Nguyen LT, van Leeuwen JH. 2017. Efficacy of NH3 as a secondary barrier treatment for inactivation of Salmonella Typhimurium and methicillin-resistant Staphylococcus aureus in digestate of animal carcasses: Proof-ofconcept. PLoS One. 12(5): e176825.
  30. Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL. 1994. Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J. Bacteriol. 176: 1729-1737. https://doi.org/10.1128/jb.176.6.1729-1737.1994
  31. Mandhania MH, Paul D, Suryavanshi MV, Sharma L, Chowdhury S, Diwanay SS, et al. 2019. Diversity and succession of microbiota during fermentation of the traditional indian food Idli. Appl. Environ. Microbiol. 85: e00368-00319.
  32. Smit G, Smit BA, Engels WJ. 2005. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 29: 591-610. https://doi.org/10.1016/j.fmrre.2005.04.002
  33. Singh V, Pathak V, Verma AK. 2012. Fermented meat products: organoleptic qualities and biogenic amines-a review. Am. J. Food Technol. 7: 278-288. https://doi.org/10.3923/ajft.2012.278.288
  34. Wang J, Fung DY. 1996. Alkaline-fermented foods: a review with emphasis on pidan fermentation. Crit. Rev. Microbiol. 22: 101-138. https://doi.org/10.3109/10408419609106457
  35. Shrestha AK, Dahal NR, Ndungutse V. 2010. Bacillus fermentation of soybean: A review. J. Food Sci. Technol. Nepal. 6: 1-9. https://doi.org/10.3126/jfstn.v6i0.8252
  36. Reynisson E, Thornor Marteinsson V, Jonsdottir R, Magnusson SH, Hreggvidsson GO. 2012. Bacterial succession during curing process of a skate (Dipturus batis) and isolation of novel strains. J. Appl. Microbiol. 113: 329-338. https://doi.org/10.1111/j.1365-2672.2012.05349.x
  37. Kimata N, Nishino T, Suzuki S, Kogure K. 2004. Pseudomonas aeruginosa isolated from marine environments in Tokyo Bay. Microb. Ecol. 47: 41-47. https://doi.org/10.1007/s00248-003-1032-9
  38. Holmstrom C, Kjelleberg S. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol. 30: 285-293. https://doi.org/10.1111/j.1574-6941.1999.tb00656.x
  39. Wu S, Liu G, Jin W, Xiu P, Sun C. 2016. Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa. Front. Microbiol. 7: 102.
  40. Sawabe T, Tanaka R, Iqbal MM, Tajima K, Ezura Y, Ivanova EP, et al. 2000. Assignment of Alteromonas elyakovii KMM 162T and five strains isolated from spot-wounded fronds of Laminaria japonica to Pseudoalteromonas elyakovii comb. nov. and the extended description of the species. Int. J. Syst. Evol. Microbiol. 50 Pt 1: 265-271. https://doi.org/10.1099/00207713-50-1-265
  41. Bowman JP. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs. 5: 220-241. https://doi.org/10.3390/md504220
  42. Odeyemi OA, Burke CM, Bolch CC, Stanley R. 2018. Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. Int. J. Food Microbiol. 280: 87-99. https://doi.org/10.1016/j.ijfoodmicro.2017.12.029
  43. Broekaert K, Noseda B, Heyndrickx M, Vlaemynck G, Devlieghere F. 2013. Volatile compounds associated with Psychrobacter spp. and Pseudoalteromonas spp., the dominant microbiota of brown shrimp (Crangon crangon) during aerobic storage. Int. J. Food Microbiol. 166: 487-493. https://doi.org/10.1016/j.ijfoodmicro.2013.08.013
  44. Ivanova EP, Gorshkova NM, Zhukova NV, Lysenko AM, Zelepuga EA, Prokof 'eva NG, et al. 2004. Characterization of Pseudoalteromonas distincta-like sea-water isolates and description of Pseudoalteromonas aliena sp. nov. Int. J. Syst. Evol. Microbiol. 54: 1431-1437. https://doi.org/10.1099/ijs.0.03053-0
  45. Wang Q, Hou Y, Ding Y, Yan P. 2012. Purification and biochemical characterization of a cold-active lipase from Antarctic sea ice bacteria Pseudoalteromonas sp. NJ 70. Mol. Biol. Rep. 39: 9233-9238. https://doi.org/10.1007/s11033-012-1796-4
  46. Delpin MW, Goodman AE. 2009. Nitrogen regulates chitinase gene expression in a marine bacterium. ISME J. 3: 1064-1069. https://doi.org/10.1038/ismej.2009.49
  47. Qu Y, Zhang R, Ma F, Zhou J, Yan B. 2011. Bioaugmentation with a novel alkali-tolerant Pseudomonas strain for alkaline phenol wastewater treatment in sequencing batch reactor. World J. Microbiol. Biotechnol. 27: 1919-1926. https://doi.org/10.1007/s11274-011-0653-2
  48. Klein S, Lorenzo C, Hoffmann S, Walther JM, Storbeck S, Piekarski T, et al. 2009. Adaptation of Pseudomonas aeruginosa to various conditions includes tRNA-dependent formation of alanyl-phosphatidylglycerol. Mol. Microbiol. 71: 551-565. https://doi.org/10.1111/j.1365-2958.2008.06562.x
  49. Offret C, Desriac F, Le Chevalier P, Mounier J, Jegou C, Fleury Y. 2016. Spotlight on Antimicrobial metabolites from the marine bacteria Pseudoalteromonas: Chemodiversity and Ecological Significance. Mar Drugs. 14: 129. https://doi.org/10.3390/md14070129
  50. Buller NB. 2014. Bacteria and fungi from fish and other aquatic animals: a practical identification manual, pp. 399. Ed. Cabi.
  51. Jung JY, Lee SH, Lee HJ, Jeon CO. 2013. Microbial succession and metabolite changes during fermentation of saeu-jeot: traditional Korean salted seafood. Food Microbiol. 34: 360-368. https://doi.org/10.1016/j.fm.2013.01.009

Cited by

  1. Improved performance and microbial community dynamics in anaerobic fermentation of triticale silages at different stages vol.345, 2020, https://doi.org/10.1016/j.biortech.2021.126485