DOI QR코드

DOI QR Code

Prevalence and Characterization of Plasmid-Mediated Quinolone Resistance Determinants qnr and aac(6')-Ib-cr in Ciprofloxacin-Resistant Escherichia coli Isolates from Commercial Layer in Korea

  • Seo, Kwang Won (College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University) ;
  • Lee, Young Ju (College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University)
  • Received : 2020.03.02
  • Accepted : 2020.05.14
  • Published : 2020.08.28

Abstract

The prevalence and characterization of plasmid-mediated quinolone resistance (PMQR) determinants in ciprofloxacin-resistant Escherichia coli isolated from a Korean commercial layer farm were studied. A total of 45 ciprofloxacin-resistant E. coli isolates were recovered and all isolates were multidrug-resistant. Eight isolates have the PMQR genes aac(6')-Ib-cr, qnrS1, and qnrB4, and seven isolates exhibited double amino acid exchange at both gyrA and parC, and have high fluoroquinolone minimum inhibitory concentrations. Five transconjugants demonstrated transferability of PMQR and β-lactamase genes and similar antimicrobial resistance. Because PMQR genes in isolates from commercial layer chickens could enter the food supply and directly affect humans, control of ciprofloxacin resistance is needed.

Keywords

References

  1. Hopkins KL, Davies RH, Threlfall EJ. 2005. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: Recent developments. Int. J. Antimicrob. Agents 25: 358-373. https://doi.org/10.1016/j.ijantimicag.2005.02.006
  2. Jacoby GA. 2005. Mechanisms of resistance to quinolones. Clin. Infect. Dis. 2: S120-S126. https://doi.org/10.1086/428052
  3. Wasyl D, Hoszowski A, Zajac M, Szulowski K. 2013. Antimicrobial resistance in commensal Escherichia coli isolated from animals at slaughter. Front. Microbiol. 4: 221. https://doi.org/10.3389/fmicb.2013.00221
  4. Xu Y, Yu W, Ma Q, Zhou H. 2015. Occurrence of (fluoro)quinolones and (fluoro)quinolone resistance in soil receiving swine manure for 11 years. Sci. Total Environ. 530-531: 191-197. https://doi.org/10.1016/j.scitotenv.2015.04.046
  5. Poirel L, Cattoir V, Nordmann P. 2012. Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Front. Microbiol. 3: 24. https://doi.org/10.3389/fmicb.2012.00024
  6. Yang H, Chen H, Yang Q, Chen M, Wang H. 2008. High prevalence of plasmid-mediated quinolone resistance genes qnr and aac(6')-Ib-cr in clinical isolates of Enterobacteriaceae from nine teaching hospitals in China. Antimicrob. Agents Chemother. 52: 4268-4273. https://doi.org/10.1128/AAC.00830-08
  7. Jabir F, Hague MT. 2010. Study on production performance of ISA Brown strain at Krishibid Firm Ltd. Trishal, Mymensingh. Bangladesh Res. Publ. J. 3: 1039-1044.
  8. Islam S, Bari MS, Moni SP, Siddiqe MZF, Uddin MH, Miazi OF. 2016. Phenotypic characteristics of commercial layer strains, ISA brown and hisex brown. Int. J. Nat. Sci. 5: 41-45. https://doi.org/10.3329/ijns.v5i2.28610
  9. Keller LH, Benson CE, Krotec K, Eckroade RJ. 1995. Salmonella enteritidis colonization of the reproductive tract and forming and freshly laid eggs of chickens. Infect. Immun. 63: 2443-2449. https://doi.org/10.1128/IAI.63.7.2443-2449.1995
  10. De Reu K, Grijspeerdt K, Messens W, Heyndrickx M, Uyttendaele M, Debevere J, et al. 2006. Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including Salmonella enteritidis. Int. J. Food Microbiol. 112: 253-260. https://doi.org/10.1016/j.ijfoodmicro.2006.04.011
  11. Foley SL, Lynne AM. 2008. Food animal-associated Salmonella challenges: pathogenicity and antimicrobial resistance. J. Anim. Sci. 86: E173-E187. https://doi.org/10.2527/jas.2007-0447
  12. CLSI. 2013. Performance standards for antimicrobial susceptibility testing M100-S23. CLSI, Wayne, PA.
  13. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. 2012. Multidrug-resistant, extensively drugresistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18: 268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
  14. Brinas L, Zarazaga M, Saenz Y, Ruiz-larrea F, Torres C. 2002. Beta-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob. Agents Chemother. 46: 3156-3163. https://doi.org/10.1128/AAC.46.10.3156-3163.2002
  15. Pitout JDD, Hossain A, Hanson ND. 2004. Phenotypic and molecular detection of CTX-M-$\beta$-Lactamases produced by Escherichia coli and Klebsiella spp. J. Clin. Microbiol. 42: 5715-5721. https://doi.org/10.1128/JCM.42.12.5715-5721.2004
  16. Yu T, Jiang X, Fu K, Liu B, Xu D, Ji S, et al. 2015. Detection of extended-spectrum $\beta$-lactamase and plasmid-mediated quinolone resistance determinants in Escherichia coli isolates from retail meat in China. J. Food Sci. 80: M1039-1043. https://doi.org/10.1111/1750-3841.12870
  17. Tamang MD, Nam HM, Jang GC, Kim SR, Chae MH, Jung SC, et al. 2012. Molecular characterization of extended-spectrum-$\beta$-lactamase-producing and plasmid-mediated AmpC $\beta$-lactamase-producing Escherichia coli isolated from stray dogs in South Korea. Antimicrob. Agents Chemother. 56: 2705-2712. https://doi.org/10.1128/AAC.05598-11
  18. Rodriguez-Martinez JM, Velasco C, Pascual A, Garcia I, Martinez-Martinez L. 2006. Correlation of quinolone resistance levels and differences in basal and quinolone-induced expression from three qnrA-containing plasmids. Clin. Microbiol. Infect. 12: 440-445. https://doi.org/10.1111/j.1469-0691.2006.01389.x
  19. Vasilaki O, Ntokou E, Ikonomidis A, Sofianou D, Frantzidou F, Alexiou-Daniel S, et al. 2008. Emergence of the plasmid-mediated quinolone resistance gene qnrS1 in Escherichia coli isolates in Greece. Antimicrob. Agents Chemother. 52: 2996-2997. https://doi.org/10.1128/AAC.00325-08
  20. Aalipour F, Mirlohi M, Jalali M. 2014. Determination of antibiotic consumption index for animal originated foods produced in animal husbandry in Iran, 2010. J. Environ. Heal. Sci. Eng. 12: 42. https://doi.org/10.1186/2052-336X-12-42
  21. Animal and Plant Quarantine Agency (APQA), 2016. National Antimicrobial Resistance Monitoring Rrogram, Gimcheon, Republic of Korea.
  22. Animal and Plant Quarantine Agency (QIA). 2015. National Antimicrobial Resistance Monitoring Program, Anyang, Republic of Korea.
  23. Kim JH, Cho JK, Kim KS. 2013. Prevalence and characterization of plasmid-mediated quinolone resistance genes in Salmonella isolated from poultry in Korea. Avian. Pathol. 42: 221-229. https://doi.org/10.1080/03079457.2013.779636
  24. Liu BT, Liao XP, Yang SS, Wang XM, Li LL, Sun J, et al. 2018. Detection of mutations in the gyrA and parC genes in Escherichia coli isolates carrying plasmid-mediated quinolone resistance genes from diseased food-producing animals. J. Med. Microbiol. 61: 1591-1599. https://doi.org/10.1099/jmm.0.043307-0
  25. Tamang MD, Nam HM, Chae MH, Kim SR, Gurung M, Jang GC, et al. 2012. Prevalence of plasmid-mediated quinolone resistance determinants among Escherichia coli isolated from food animals in Korea. Foodborne Pathog. Dis. 9: 1057-1063. https://doi.org/10.1089/fpd.2012.1225
  26. Briales A, Rodriguez-Martinez JM, Velasco C, de Alba PD, Rodriguez-Bano J, Martinez-Martinez L, et al. 2012. Prevalence of plasmid-mediated quinolone resistance determinants qnr and aac(6')-Ib-cr in Escherichia coli and Klebsiella pneumoniae producing extended-spectrum $\beta$-lactamases in Spain. Int. J. Antimicrob. Agents. 39: 431-434. https://doi.org/10.1016/j.ijantimicag.2011.12.009

Cited by

  1. Antimicrobial Resistance Profiles, Virulence Genes, and Genetic Diversity of Thermophilic Campylobacter Species Isolated From a Layer Poultry Farm in Korea vol.12, 2021, https://doi.org/10.3389/fmicb.2021.622275