DOI QR코드

DOI QR Code

Fecal Microbiota Transplantation (FMT) Alleviates Experimental Colitis in Mice by Gut Microbiota Regulation

  • Zhang, Wanying (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University) ;
  • Zou, Guiling (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University) ;
  • Li, Bin (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University) ;
  • Du, Xuefei (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University) ;
  • Sun, Zhe (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University) ;
  • Sun, Yu (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University) ;
  • Jiang, Xiaofeng (Department of Clinical Laboratory, Fourth Affiliated Hospital of Harbin Medical University)
  • Received : 2020.02.24
  • Accepted : 2020.05.10
  • Published : 2020.08.28

Abstract

Inflammatory bowel disease (IBD) is an increasing global burden and a predisposing factor to colorectal cancer. Although a number of treatment options are available, the side effects could be considerable. Studies on fecal microbiota transplantation (FMT) as an IBD intervention protocol require further validation as the underlying mechanisms for its attenuating effects remain unclear. This study aims to demonstrate the ameliorative role of FMT in an ulcerative colitis (UC) model induced by dextran sulfate sodium (DSS) and elucidate its relative mechanisms in a mouse model. It was shown that FMT intervention decreased disease activity index (DAI) levels and increased the body weight, colon weight and colon length of experimental animals. It also alleviated histopathological changes, reduced key cytokine expression and oxidative status in the colon. A down-regulated expression level of genes associated with NF-κB signaling pathway was also observed. The results of 16S rRNA gene sequencing showed that FMT intervention restored the gut microbiota to the pattern of the control group by increasing the relative abundance of Firmicutes and decreasing the abundances of Bacteroidetes and Proteobacteria. The relative abundances of the genera Lactobacillus, Butyricicoccus, Lachnoclostridium, Olsenella and Odoribacter were upregulated but Helicobacter, Bacteroides and Clostridium were reduced after FMT administration. Furthermore, FMT administration elevated the concentrations of SCFAs in the colon. In conclusion, FMT intervention could be suitable for UC control, but further validations via clinical trials are recommended.

Keywords

References

  1. Shaukat A, Virnig DJ, Salfiti NI, Howard DH, Sitaraman SV, Liff JM. 2011. Is inflammatory bowel disease an important risk factor among older persons with colorectal cancer in the United States? A population-based case-control study. Dig. Dis. Sci. 56: 2378. https://doi.org/10.1007/s10620-011-1632-z
  2. Chang M, Chang L, Chang HM, Chang F. 2018. Intestinal and extraintestinal cancers associated with inflammatory bowel disease. Clin. Colorectal Cancer 17: e29-e37. https://doi.org/10.1016/j.clcc.2017.06.009
  3. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. 2017. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390: 2769-2778. https://doi.org/10.1016/S0140-6736(17)32448-0
  4. Monteleone I, Vavassori P, Biancone L, Monteleone G, Pallone F. 2002. Immunoregulation in the gut: success and failures in human disease. Gut 50: iii60-iii64. https://doi.org/10.1136/gut.50.suppl_3.iii60
  5. Castro-Dopico T, Clatworthy MR. 2019. IgG and $Fc{\gamma}$ receptors in intestinal immunity and inflammation. Front. Immunol. 10: 805. https://doi.org/10.3389/fimmu.2019.00805
  6. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9: 7204-7218. https://doi.org/10.18632/oncotarget.23208
  7. Sun Y, Zhao Y, Yao J, Zhao L, Wu Z, Wang Y, et al. 2015. Wogonoside protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-${\kappa}B$ and NLRP3 inflammasome activation. Biochem. Pharmacol. 94: 142-154. https://doi.org/10.1016/j.bcp.2015.02.002
  8. Ghosh S. 2004. Signaling to NF-${\kappa}B$. Genes Dev. 18: 2195-2224. https://doi.org/10.1101/gad.1228704
  9. Rogler G, Brand K, Vogl D, Page S, Hofmeister R, Andus T, et al. 1998. Nuclear factor ${\kappa}B$ is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115: 357-369. https://doi.org/10.1016/S0016-5085(98)70202-1
  10. Schreiber S, Nikolaus S, Hampe J. 1998. Activation of nuclear factor ${\kappa}B$ in inflammatory bowel disease. Gut 42: 477-484. https://doi.org/10.1136/gut.42.4.477
  11. Sartor RB. 2008. Microbial influences in inflammatory bowel diseases. Gastroenterology 134: 577-594. https://doi.org/10.1053/j.gastro.2007.11.059
  12. Clemente JC, Manasson J, Scher JU. 2018. The role of the gut microbiome in systemic inflammatory disease. BMJ. 360: j5145. https://doi.org/10.1136/bmj.j5145
  13. Wang Z-K, Yang Y-S, Chen Y, Yuan J, Sun G, Peng L-H. 2014. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease. World J. Gastroenterol. 20: 14805-14820. https://doi.org/10.3748/wjg.v20.i40.14805
  14. Kang D-W, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, et al. 2017. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5: 10. https://doi.org/10.1186/s40168-016-0225-7
  15. Kaur R, Thakur S, Rastogi P, Kaushal N. 2018. Resolution of Cox mediated inflammation by Se supplementation in mouse experimental model of colitis. PLoS One. 13: e0201356. https://doi.org/10.1371/journal.pone.0201356
  16. Zhou D, Pan Q, Shen F, Cao H-x, Ding W-j, Chen Y-w, et al. 2017. Total fecal microbiota transplantation alleviates high-fat dietinduced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci. Rep. 7: 1-11. https://doi.org/10.1038/s41598-016-0028-x
  17. Camuesco D, Comalada M, Rodriguez-Cabezas ME, Nieto A, Lorente MD, Concha A, et al. 2004. The intestinal anti-inflammatory effect of quercitrin is associated with an inhibition in iNOS expression. Br. J. Pharmacol. 143: 908-918. https://doi.org/10.1038/sj.bjp.0705941
  18. Murthy S, Cooper HS, Shim H, Shah RS, Ibrahim SA, Sedergran DJ. 1993. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig. Dis. Sci. 38: 1722-1734. https://doi.org/10.1007/BF01303184
  19. Viennois E, Chen F, Laroui H, Baker MT, Merlin D. 2013. Dextran sodium sulfate inhibits the activities of both polymerase and reverse transcriptase: lithium chloride purification, a rapid and efficient technique to purify RNA. BMC Res. Notes 6: 360. https://doi.org/10.1186/1756-0500-6-360
  20. Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
  21. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
  22. Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996-998. https://doi.org/10.1038/nmeth.2604
  23. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of highthroughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
  24. Li B, Smith EE, Lu J, Jiao Y, Huo G. 2018. Lactobacillus helveticus KLDS1.8701 alleviates D-galactose-induced aging by regulating of Nrf-2 and gut microbiota in mice. Food Funct. 9: 6586-6598. https://doi.org/10.1039/C8FO01768A
  25. Perse M, Cerar A. 2012. Dextran sodium sulphate colitis mouse model: traps and tricks. J. Biomed. Biotechnol. 2012: 718617.
  26. Johansson ME. 2014. Mucus layers in inflammatory bowel disease. Inflamm. Bowel Dis. 20: 2124-2131. https://doi.org/10.1097/MIB.0000000000000117
  27. Zhang Z, Shen P, Liu J, Gu C, Lu X, Li Y, et al. 2017. In vivo study of the efficacy of the essential oil of Zanthoxylum bungeanum pericarp in dextran sulfate sodium-induced murine experimental colitis. J. Agric. Food Chem. 65: 3311-3319. https://doi.org/10.1021/acs.jafc.7b01323
  28. Sun Mc, Zhang Fc, Yin X, Cheng Bj, Zhao Ch, Wang Yl, et al. 2018. Lactobacillus reuteri F-9-35 prevents DSS-Induced colitis by inhibiting proinflammatory gene expression and restoring the gut microbiota in mice. J. Food Sci. 83: 2645-2652. https://doi.org/10.1111/1750-3841.14326
  29. Burrello C, Garavaglia F, Cribiu FM, Ercoli G, Lopez G, Troisi J, et al. 2018. Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat. Commun. 9: 5184. https://doi.org/10.1038/s41467-018-07359-8
  30. Tian Z, Liu J, Liao M, Li W, Zou J, Han X, et al. 2016. Beneficial effects of fecal microbiota transplantation on ulcerative colitis in mice. Dig. Dis. Sci. 61: 2262-2271. https://doi.org/10.1007/s10620-016-4060-2
  31. Li B, Alli R, Vogel P, Geiger TL. 2014. IL-10 modulates DSS-induced colitis through a macrophage-ROS-NO axis. Mucosal Immunol. 7: 869-878. https://doi.org/10.1038/mi.2013.103
  32. Wright EK, Kamm MA, Teo SM, Inouye M, Wagner J, Kirkwood CD. 2015. Recent advances in characterizing the gastrointestinal microbiome in Crohn's disease: a systematic review. Inflamm. Bowel Dis. 21: 1219-1228. https://doi.org/10.1097/MIB.0000000000000382
  33. Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV, et al. 2015. A polyphenol-rich cranberry extract protects from dietinduced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64: 872-883. https://doi.org/10.1136/gutjnl-2014-307142
  34. Peng X, Kong B, Yu H, Diao X. 2014. Protective effect of whey protein hydrolysates against oxidative stress in D-galactose-induced ageing rats. Int. Dairy J. 34: 80-85. https://doi.org/10.1016/j.idairyj.2013.08.004
  35. Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, et al. 2012. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 135: 1914-1919. https://doi.org/10.1016/j.foodchem.2012.06.048
  36. Zhu J, Mu X, Zeng J, Xu C, Liu J, Zhang M, et al. 2014. Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging. PLoS One. 9: e101291. https://doi.org/10.1371/journal.pone.0101291
  37. Garside P. 1999. Cytokines in experimental colitis. Clin. Exp. Immunol. 118: 337-339. https://doi.org/10.1046/j.1365-2249.1999.01088.x
  38. Wang K, Jin X, Li Q, Sawaya ACHF, Le Leu RK, Conlon MA, et al. 2018. Propolis from different geographic origins decreases intestinal inflammation and Bacteroides spp. populations in a model of DSS-Induced colitis. Mol. Nutr. Food Res. 62: 1800080. https://doi.org/10.1002/mnfr.201800080
  39. Alex P, Zachos NC, Nguyen T, Gonzales L, Chen T-E, Conklin LS, et al. 2008. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflamm. Bowel Dis. 15: 341-352. https://doi.org/10.1002/ibd.20753
  40. Boussenna A, Goncalves-Mendes N, Joubert-Zakeyh J, Pereira B, Fraisse D, Vasson M-P, et al. 2015. Impact of basal diet on dextran sodium sulphate (DSS)-induced colitis in rats. Eur. J. Nutr. 54: 1217-1227. https://doi.org/10.1007/s00394-014-0800-2
  41. Bischoff S, Lorentz A, Schwengberg S, Weier G, Raab R, Manns M. 1999. Mast cells are an important cellular source of tumour necrosis factor $\alpha$ in human intestinal tissue. Gut 44: 643-652. https://doi.org/10.1136/gut.44.5.643
  42. Sommer J, Engelowski E, Baran P, Garbers C, Floss DM, Scheller J. 2014. Interleukin-6, but not the interleukin-6 receptor plays a role in recovery from dextran sodium sulfate-induced colitis. Int. J. Mol. Med. 34: 651-660. https://doi.org/10.3892/ijmm.2014.1825
  43. Vemuri R, Gundamaraju R, Shinde T, Eri R. 2017. Therapeutic interventions for gut dysbiosis and related disorders in the elderly: antibiotics, probiotics or faecal microbiota transplantation? Benef. Microbes 8: 179-192. https://doi.org/10.3920/BM2016.0115
  44. Garcia-Mantrana I, Selma-Royo M, Alcantara Baena C, Collado MC. 2018. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front. Microbiol. 9: 890. https://doi.org/10.3389/fmicb.2018.00890
  45. Sun MC, Zhang FC, Yin X, Cheng BJ, Zhao CH, Wang YL, et al. 2018. Lactobacillus reuteri F-9-35 prevents DSS-Induced colitis by inhibiting proinflammatory gene expression and restoring the gut microbiota in mice. J. Food Sci. 83: 2645-2652. https://doi.org/10.1111/1750-3841.14326
  46. Aderem A, Ulevitch RJ. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406: 782-787. https://doi.org/10.1038/35021228
  47. Lamping N, Dettmer R, Schr-Der NW, Pfeil D, Hallatschek W, Burger R, et al. 1998. LPS-binding protein protects mice from septic shock caused by LPS or gram-negative bacteria. J. Clin. Invest. 101: 2065-2071. https://doi.org/10.1172/JCI2338
  48. Zhang F, Li Y, Wang X, Wang S, Bi D. 2019. The Impact of Lactobacillus plantarum on the gut microbiota of mice with DSS-Induced colitis. Biomed Res. Int. 2019: 3921315. https://doi.org/10.1155/2019/3921315
  49. Imhann F, Vila AV, Bonder MJ, Fu J, Gevers D, Visschedijk MC, et al. 2018. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67: 108-119. https://doi.org/10.1136/gutjnl-2016-312135
  50. Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, et al. 2014. The treatment-naive microbiome in newonset Crohn's disease. Cell Host Microbe 15: 382-392. https://doi.org/10.1016/j.chom.2014.02.005
  51. Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. 2014. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158: 1000-1010. https://doi.org/10.1016/j.cell.2014.08.006
  52. Zhang S-L, Wang S-N, Miao C-Y. 2017. Influence of microbiota on intestinal immune system in ulcerative colitis and its intervention. Front. Immunol. 8: 1674. https://doi.org/10.3389/fimmu.2017.01674
  53. Di Lorenzo F, De Castro C, Silipo A, Molinaro A. 2019. Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions. FEMS Microbiol. Rev. 43: 257-272. https://doi.org/10.1093/femsre/fuz002
  54. Forbes JD, Van Domselaar G, Bernstein CN. 2016. The gut microbiota in immune-mediated inflammatory diseases. Front. Microbiol. 7: 1081.
  55. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. 2019. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4: 293-305. https://doi.org/10.1038/s41564-018-0306-4
  56. Borody TJ, Campbell J. 2012. Fecal microbiota transplantation: techniques, applications, and issues. Gastroenterol. Clin. North Am. 41: 781-803. https://doi.org/10.1016/j.gtc.2012.08.008
  57. De Groot P, Frissen M, De Clercq N, Nieuwdorp M. 2017. Fecal microbiota transplantation in metabolic syndrome: history, present and future. Gut Microbes 8: 253-267. https://doi.org/10.1080/19490976.2017.1293224
  58. Thorburn AN, Macia L, Mackay CR. 2014. Diet, metabolites, and "western-lifestyle" inflammatory diseases. Immunity 40: 833-842. https://doi.org/10.1016/j.immuni.2014.05.014
  59. Donia MS, Fischbach MA. 2015. Small molecules from the human microbiota. Science 349: 1254766. https://doi.org/10.1126/science.1254766
  60. Canani RB, Sangwan N, Stefka AT, Nocerino R, Paparo L, Aitoro R, et al. 2016. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J. 10: 742-750. https://doi.org/10.1038/ismej.2015.151
  61. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500: 541-546. https://doi.org/10.1038/nature12506
  62. Reichardt N, Duncan SH, Young P, Belenguer A, Leitch CM, Scott KP, et al. 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8: 1323-1335. https://doi.org/10.1038/ismej.2014.14
  63. Louis P, Flint HJ. 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294: 1-8. https://doi.org/10.1111/j.1574-6968.2009.01514.x
  64. Vital M, Howe AC, Tiedje JM. 2014. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data. MBio. 5: e00889-00814.
  65. Wongkuna S, Ghimire S, Kumar R, Antony L, Chankhamhaengdecha S, Janvilisri T, et al. 2019. Olsenella lakotia SW165 sp. nov., an acetate producing obligate anaerobe with a GC rich genome. BioRxiv. 670927.
  66. Granado-Serrano AB, Martin-Gari M, Sanchez V, Solans MR, Berdun R, Ludwig IA, et al. 2019. Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci. Rep. 9: 1-13. https://doi.org/10.1038/s41598-018-37186-2
  67. Li B, Evivie SE, Lu J, Jiao Y, Wang C, Li Z, et al. 2018. Lactobacillus helveticus KLDS1. 8701 alleviates D-galactose-induced aging by regulating Nrf-2 and gut microbiota in mice. Food Funct. 9: 6586-6598. https://doi.org/10.1039/C8FO01768A
  68. Dong W, Jia Y, Liu X, Zhang H, Li T, Huang W, et al. 2017. Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC. J. Endocrinol. 232: 71-83. https://doi.org/10.1530/JOE-16-0322
  69. Venegas DP, Marjorie K, Landskron G, Gonzalez MJ, Quera R, Dijkstra G, et al. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10: 277. https://doi.org/10.3389/fimmu.2019.00277
  70. Saeki Y, Ishiyama K, Ishida N, Tanaka Y, Ohdan H. 2019. Memory-like liver natural killer cells are responsible for islet destruction in secondary islet transplantation. Sci. Rep. 9: 1-14. https://doi.org/10.1038/s41598-018-37186-2
  71. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, et al. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17: 662-671. https://doi.org/10.1016/j.chom.2015.03.005
  72. Riviere A, Selak M, Lantin D, Leroy F, De Vuyst L. 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7: 979.
  73. Tedelind S, Westberg F, Kjerrulf M, Vidal A. 2007. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J. Gastroenterol. 13: 2826. https://doi.org/10.3748/wjg.v13.i20.2826
  74. Zhao G, Jiang K, Wu H, Qiu C, Deng G, Peng X. 2017. Polydatin reduces Staphylococcus aureus lipoteichoic acid-induced injury by attenuating reactive oxygen species generation and TLR 2-NF ${\kappa}B$ signalling. J. Cell. Mol. Med. 21: 2796-2808. https://doi.org/10.1111/jcmm.13194
  75. Zhao G, Zhang T, Ma X, Jiang K, Wu H, Qiu C, et al. 2017. Oridonin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-induced RAW264. 7 cells and acute lung injury. Oncotarget 8: 68153. https://doi.org/10.18632/oncotarget.19249
  76. Makarov SS. 2000. NF-${\kappa}B$ as a therapeutic target in chronic inflammation: recent advances. Mol. Med. Today 6: 441-448. https://doi.org/10.1016/S1357-4310(00)01814-1
  77. Tak PP, Firestein GS. 2001. NF-${\kappa}B$: a key role in inflammatory diseases. J. Clin. Invest. 107: 7-11. https://doi.org/10.1172/JCI11830

Cited by

  1. Comparison of the fermentation and bacterial community in the colon of Hu sheep fed a low-grain, non-pelleted, or pelleted high-grain diet vol.105, pp.5, 2020, https://doi.org/10.1007/s00253-021-11158-5
  2. Lactobacillus rhamnosus from human breast milk ameliorates ulcerative colitis in mice via gut microbiota modulation vol.12, pp.11, 2020, https://doi.org/10.1039/d0fo03479g
  3. Lactobacillus rhamnosus from human breast milk ameliorates ulcerative colitis in mice via gut microbiota modulation vol.12, pp.11, 2020, https://doi.org/10.1039/d0fo03479g
  4. Casein-fed mice showed faster recovery from DSS-induced colitis than chicken-protein-fed mice vol.12, pp.13, 2020, https://doi.org/10.1039/d1fo00659b
  5. Cross Talk between Gut Microbiota and Intestinal Mucosal Immunity in the Development of Ulcerative Colitis vol.89, pp.9, 2020, https://doi.org/10.1128/iai.00014-21
  6. Peripheral blood neutrophil-to-lymphocyte ratio in inflammatory bowel disease and disease activity: A meta-analysis vol.101, pp.no.pb, 2020, https://doi.org/10.1016/j.intimp.2021.108235
  7. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota- vol.9, pp.1, 2020, https://doi.org/10.1186/s40168-021-01107-9
  8. Fluoride exposure cause colon microbiota dysbiosis by destroyed microenvironment and disturbed antimicrobial peptides expression in colon vol.292, pp.no.pb, 2020, https://doi.org/10.1016/j.envpol.2021.118381