DOI QR코드

DOI QR Code

The Inhibitor Effect of (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc(II) Chloride, an Industrial Cationic Azo Dye, onto Reducing Acidic Corrosion Rate of Mild Steel

  • Ozkir, Demet (Nigde Omer Halisdemir University, Faculty of Arts and Sciences, Department of Chemistry) ;
  • Kayakirilmaz, Kadriye (Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics)
  • Received : 2019.12.25
  • Accepted : 2020.02.10
  • Published : 2020.08.31

Abstract

This study covers the stages of testing whether the azo dye with chemical name (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc (II) chloride (DMT), known as Maxilon Red GRL in the dye industry, can be used as an anticorrosive feasible inhibitory agent, especially in industrial areas other than carpet, yarn and fibre dyeing. These test stages consist of the electrochemical measurement techniques such as potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) for diverse concentrations and durations. The adsorption of the viewed DMT molecule on the mild steel surface obeyed the Langmuir isotherm. The zero charge potential (PZC) of mild steel was also found to assess the inhibition mechanism in containing DMT solution. The inhibition performance of DMT on the mild steel in a 1.0 M HCl solution was also investigated using methods such as metal microscope, atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM).

Keywords

References

  1. M. Erbil, Korozyon (llkeler-Yontemler), Korozyon Dernegi Yayini, Ankara, Turkiye, 1-3, 2012.
  2. M. Sarioglu, Global NEST J. 2018, 20(1), 25-32. https://doi.org/10.30955/gnj.002347
  3. F. Mehrabi, A. Vafaei, M. Ghaedi, A.M. Ghaedi, E.A. Dil, A. Asfaram, Ultrason. Sonochem. 2017, 38, 672-680. https://doi.org/10.1016/j.ultsonch.2016.08.012
  4. G.O. El-Sayed, T.Y. Mohammed, A.A. Salama, ISRN Environ. Chem. 2013, 2, 1-8
  5. F. Wang, J. Huang, J. Xu, Chem. Eng. Process, 2018, 127, 43-49. https://doi.org/10.1016/j.cep.2018.03.014
  6. L.H. Madkour, S. Kaya, C. Kaya, L. Guo, J. Taiwan Inst. Chem. Eng. 2016, 68, 461-480. https://doi.org/10.1016/j.jtice.2016.09.015
  7. L.H. Madkour, S. Kaya, L. Guo, C. Kaya, J. Mol. Struct. 2018, 1163, 397-417. https://doi.org/10.1016/j.molstruc.2018.03.013
  8. M.S. Shihab, H.H. Al-Doori, J. Mol. Struct., 2014, 1076, 658-663. https://doi.org/10.1016/j.molstruc.2014.08.038
  9. G.O. El-Sayed, M.S. Awad, Z.A. Ayad, Int. Res. J. Pure Appl. Chem. 2014, 4(4), 402-416. https://doi.org/10.9734/IRJPAC/2014/7819
  10. L.B. Tang, X.M. Li, L. Li, G.N. Mu, G.H. Liu, Surf. Coat. Technol., 2006, 201(1-2), 384-388. https://doi.org/10.1016/j.surfcoat.2005.11.132
  11. M. Keewan, F. Banat, E. Alhseinat, J. Zain, P. Pal, J. Petrol. Sci. Eng., 2018, 165, 358-364. https://doi.org/10.1016/j.petrol.2018.02.046
  12. L. Guo, I.B. Obot, X. Zheng, X. Shen, Y. Qiang, S. Kaya, C. Kaya, Appl. Surf. Sci., 2017, 406, 301-306. https://doi.org/10.1016/j.apsusc.2017.02.134
  13. H. Behzadi, S. Manzetti, M. Dargahi, P. Roonasi, Z. Khalilnia, J. Mol. Struct., 2018, 1151, 34-40. https://doi.org/10.1016/j.molstruc.2017.09.029
  14. Y. Surme, A.A. Gurten, E. Bayol, Prot. Met. Phys. Chem+, 2011, 47(1), 117-120. https://doi.org/10.1134/S2070205110051053
  15. M. Erbil, Chim. Acta Turc., 1988, 1, 59-70.
  16. Y. Surme, A.A. Gurten, Corros. Eng. Sci. Techn., 2009, 44(4), 304-311. https://doi.org/10.1179/174327808X303464
  17. K. Palanisamy, P. Kannan, A. Sekar, Surfaces and Interfaces, 2018, 12, 50-60. https://doi.org/10.1016/j.surfin.2018.05.005
  18. Z.Z. Tasic, M.B.P. Mihajlovic, M.B. Radovanovic, A.T. Simonovic, M.M. Antonijevic, J. Mol. Struct. 2018, 1159, 46-54. https://doi.org/10.1016/j.molstruc.2018.01.031
  19. M.H.O. Ahmed, A.A. Al-Amiery, Y.K. Al-Majedy, A.A.H. Kadhum, A.B. Mohamad, T.S. Gaaz, Results Phys. 2018, 8, 728-733. https://doi.org/10.1016/j.rinp.2017.12.039
  20. M. Mobin, M. Basik, J. Aslam, J. Mol. Liq., 2018. 263, 174-186. https://doi.org/10.1016/j.molliq.2018.04.150
  21. D. Ozkir, K. Kayakirilmaz, E. Bayol, A.A. Gurten, F. Kandemirli, Corros. Sci., 2012, 56, 143-152. https://doi.org/10.1016/j.corsci.2011.11.010
  22. D. Ozkir, E. Bayol, A.A. Gurten, Y. Surme, J. Chil. Chem. Soc., 2013, 58(4), 2158-2167. https://doi.org/10.4067/S0717-97072013000400056
  23. M. Prajila, A. Joseph, J. Mol. Liq., 2017, 241, 1-8. https://doi.org/10.1016/j.molliq.2017.05.136
  24. G. Khan, W.J. Basirun, S.N. Kazi, P. Ahmed, L. Magaji, S.M. Ahmed, G.M. Khan, M.A. Rehman, J. Colloid. Interf. Sci., 2017, 502, 134-145. https://doi.org/10.1016/j.jcis.2017.04.061
  25. M. Faustin, A. Maciuk, P. Salvin, C. Roos, M. Lebrini, Corros. Sci., 2015, 92, 287-300. https://doi.org/10.1016/j.corsci.2014.12.005
  26. N. Kicir, G. Tansug, M. Erbil, T. Tuken, Corros. Sci., 2016, 105, 88-99. https://doi.org/10.1016/j.corsci.2016.01.006
  27. A.J. Bard, M. Stratmann, G.S. Frankel, Corrosion and Oxide Films, Wiley-VCH, Vol. 4, 2003.
  28. A.J. Bard and M. Stratmann, Thermodynamics and Electrified Interfaces, Wiley-VCH, Vol.1, 2002.
  29. O. Sotelo-Mazon, S. Valdez-Rodriguez, J. Porcayo-Calderon, M. Casales-Diaz, J. Henao, G. Salinas-Solano, J.L. Valenzuela-Lagarda & L. Martinez-Gomez, Green Chem. Lett. Rev., 2019, 12(3), 255-270. https://doi.org/10.1080/17518253.2019.1629698
  30. G. Salinas-Solano, J. Porcayo-Calderon, L.M. Martinez de la Escalera, J. Canto, M. Casales-Diaz, O. Sotelo-Mazon, J. Henao, L. Martinez-Gomez, Ind. Crop. Prod. 2018, 119, 111-124. https://doi.org/10.1016/j.indcrop.2018.04.009
  31. I.B. Obot, N.O. Obi-Egbedi, Curr. Appl. Phys. 2011, 11(3), 382-392. https://doi.org/10.1016/j.cap.2010.08.007
  32. A.S. Kumar, M.A. Quraishi, Corros. Sci., 2010, 52(1), 152-160. https://doi.org/10.1016/j.corsci.2009.08.050
  33. M.A. Quraishi, R. Sardar, Mater. Chem. Phys., 2003, 78(2), 425-431. https://doi.org/10.1016/S0254-0584(02)00299-7
  34. M.A. Amin, K.F. Khaled, Corros. Sci., 2010, 52(4), 1194-1204. https://doi.org/10.1016/j.corsci.2009.12.035
  35. B.P. Charitha, P. Rao, Int. J. Biol. Macromol., 2018, 112, 461-472. https://doi.org/10.1016/j.ijbiomac.2018.01.218
  36. B.S. Prathibha, H.P. Nagaswarupa, P. Kotteeswaran, V. BheemaRaju, Mater. Today., 2017, 4(11), 12245-12254. https://doi.org/10.1016/j.matpr.2017.09.156
  37. H. Zhang, K. Gao, L. Yan, X. Pang, J. Electroanal. Chem., 2017, 791, 83-94. https://doi.org/10.1016/j.jelechem.2017.02.046
  38. H.L.Y. Sin, A.A. Rahim, C.Y. Gan, B. Saad, M.I. Salleh, M. Umeda, Measurement, 2017, 109, 334-345. https://doi.org/10.1016/j.measurement.2017.05.045
  39. Y. Wang, Y. Zuo, Y. Tang, Constr. Build. Mater., 2018, 167, 197-204. https://doi.org/10.1016/j.conbuildmat.2018.01.170
  40. D. Ozkir, E. Bayol, A.A. Gurten, Y. Surme, F. Kandemirli, Chem. Pap., 2013, 67(2), 202-212.
  41. N.V. Likhanova, P. Arellanes-Lozada, O. Olivares-Xometl, H. Hernandez-Cocoletzi, I.V. Lijanova, J. Arriola-Morales, J.E. Castellanos-Aguila, J. Mol. Liq., 2019, 279, 267-278. https://doi.org/10.1016/j.molliq.2019.01.126
  42. K. Haruna, I.B. Obot, N.K. Ankah, A.A. Sorour, T.A. Saleh, J. Mol. Liq., 2018, 264, 515-525. https://doi.org/10.1016/j.molliq.2018.05.058
  43. A.A. Al-Amiery, M.H.O. Ahmed, T.A. Abdullah, T.S. Gaaz, A.A.H. Kadhum, Results Phys., 2018, 9, 978-981. https://doi.org/10.1016/j.rinp.2018.04.004
  44. A.A. Al-Amiery, A.A.H. Kadhum, A. Kadihum, A.B. Mohamad, C.K. How, S. Junaedi, Materials (Basel), 2014, 7(2), 787-804. https://doi.org/10.3390/ma7020787
  45. S.A. Umoren, A.A. AlAhmary, Z.M. Gasem, M.M. Solomon, Int. J. Biol. Macromol., 2018, 117, 1017-1028. https://doi.org/10.1016/j.ijbiomac.2018.06.014
  46. R. Lopes-Sesenes, G.F. Dominguez-Patino, J.G. Gonzalez-Rodriguez, J. Uruchurtu-Chavarin, Int. J. Electrochem. Sci., 2013, 8, 477-489.
  47. S.A. Umoren, Y. Li, F.H. Wang, Corros. Sci., 2010, 52(7), 2422-2429. https://doi.org/10.1016/j.corsci.2010.03.021
  48. S.A. Umoren, O. Ogbobe, I.O. Igwe, E.E. Ebenso, Corros. Sci., 2008, 50, 1998-2006. https://doi.org/10.1016/j.corsci.2008.04.015
  49. K.A.A Al-Sodani, O.S.B. Al-Amoudi, M. Maslehuddin, M. Shameem, Constr. Build. Mater., 2018, 163, 97-112. https://doi.org/10.1016/j.conbuildmat.2017.12.097
  50. D. Ozkir, J. Electrochem. Sci. Te., 2019, 10(1), 37-54. https://doi.org/10.5229/JECST.2019.10.1.37
  51. H. Nady, Egypt. J. Pet., 2017, 26, 905-913. https://doi.org/10.1016/j.ejpe.2016.02.004
  52. M.A. Amin, K.F. Khaled, S.A. Fadl-Allah, Corros. Sci., 2010, 52(1), 140-151. https://doi.org/10.1016/j.corsci.2009.08.055
  53. Y. Ye, D. Yang, H. Chen, J. Mater. Sci. Technol., 2019, 35, 2243-2253. https://doi.org/10.1016/j.jmst.2019.05.045
  54. D. Yang, Y. Ye, Y. Su, S. Liu, D. Gong, H. Zhao, J. Clean. Prod., 2019, 229, 180-192. https://doi.org/10.1016/j.jclepro.2019.05.030
  55. D.S. Chauhan, A.M. Kumar, M.A. Quraishi, Chem. Eng. Res. Des., 2019, 150, 99-115. https://doi.org/10.1016/j.cherd.2019.07.020
  56. C.M. Fernandes, T.S.F. Fagundes, N.E. dos Santos, T.S.M. Rocha, R. Garrett, R.M. Borges, G. Muricy, A.L. Valverde, E.A. Ponzio, Electrochim. Acta, 2019, 312, 137-148. https://doi.org/10.1016/j.electacta.2019.04.148
  57. T. Rabizadeh, S.K. Asl, J. Mol. Liq., 2019, 276, 694-704. https://doi.org/10.1016/j.molliq.2018.11.162
  58. V.N. Ayukayeva, G.I. Boiko, N.P. Lyubchenko, R.G. Sarmurzina, R.F. Mukhamedova, U.S. Karabalin, S.A. Dergunov, Colloids Surf. A Physicochem. Eng. Asp., 2019, 579, 123636. https://doi.org/10.1016/j.colsurfa.2019.123636
  59. A.S. Abousalem, M.A. Ismail, A.S. Fouda, J. Mol. Liq., 2019, 276, 255-274. https://doi.org/10.1016/j.molliq.2018.11.125
  60. J.V. Nardeli, C.S. Fugivara, M. Taryba, E.R.P. Pinto, M.F. Montemor, A.V. Benedetti, Prog. Org. Coat., 2019, 135, 368-381. https://doi.org/10.1016/j.porgcoat.2019.05.035
  61. M.T. Majd, T. Shahrabi, B. Ramezanzadeh, J. Alloys Compd., 2019, 783, 952-968. https://doi.org/10.1016/j.jallcom.2018.12.367
  62. W. Zhang, H.J. Li, M. Wang, L.J. Wang, Q. Pan, X. Ji, Y. Qin, Y.C. Wu, J. Mol. Liq., 2019, 293, 111478. https://doi.org/10.1016/j.molliq.2019.111478
  63. M. Murmu, S.Kr. Saha, N.C. Murmu, P. Banerjee, Corros. Sci., 2019, 146, 134-151. https://doi.org/10.1016/j.corsci.2018.10.002
  64. M.A. Asaad, N.N. Sarbini, A. Sulaiman, M. Ismail, G.F. Huseien, Z.A. Majid, P.B. Raja, J. Ind. Eng. Chem., 2018, 63, 139-148. https://doi.org/10.1016/j.jiec.2018.02.010
  65. D. Ozkir, Int. J. Electrochem., 2019, 2019, 1-11. https://doi.org/10.1155/2019/5743952
  66. I. Abdulazeez, A. Zeino, C.W. Kee, A.A. Al-Saadi, M. Khaled, M.W. Wong, A.A. Al-Sunaidi, Appl. Surf. Sci., 2019, 471, 494-505. https://doi.org/10.1016/j.apsusc.2018.12.028
  67. D. Ozkir, NOHU J. Eng. Sci., 2018, 7(2), 993-1003.

Cited by

  1. Corrosion behaviour of new oxo-pyrimidine derivatives on mild steel in acidic media: Experimental, surface characterization, theoretical, and Monte Carlo studies vol.7, 2020, https://doi.org/10.1016/j.apsadv.2021.100200