DOI QR코드

DOI QR Code

Nanostructured Electrode Materials for Rechargeable Lithium-Ion Batteries

  • Zhao, Wei (Department of Energy Science, Sungkyunkwan University (SKKU)) ;
  • Choi, Woosung (Department of Energy Science, Sungkyunkwan University (SKKU)) ;
  • Yoon, Won-Sub (Department of Energy Science, Sungkyunkwan University (SKKU))
  • Received : 2020.01.23
  • Accepted : 2020.03.14
  • Published : 2020.08.31

Abstract

Today, rechargeable lithium-ion batteries are an essential portion of modern daily life. As a promising alternative to traditional energy storage systems, they possess various advantages. This review attempts to provide the reader with an indepth understanding of the working mechanisms, current technological progress, and scientific challenges for a wide variety of lithium-ion battery (LIB) electrode nanomaterials. Electrochemical thermodynamics and kinetics are the two main perspectives underlying our introduction, which aims to provide an informative foundation for the rational design of electrode materials. Moreover, both anode and cathode materials are clarified into several types, using some specific examples to demonstrate both their advantages and shortcomings, and some improvements are suggested as well. In addition, we summarize some recent research progress in the rational design and synthesis of nanostructured anode and cathode materials, together with their corresponding electrochemical performances. Based on all these discussions, potential directions for further development of LIBs are summarized and presented.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2017R1A4A1015770). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2019R1A2C2003731).

References

  1. X.X. Zhou, Y. Zhang, Chem. Soc. Rev., 2015, 44(15), 5148-5180. https://doi.org/10.1039/C4CS00448E
  2. Y. Li, D. Zhang, X. Jin, L. Yang, X. Du, Y. Yang, Sci. China: Technol. Sci., 2016, 59(5), 468-479.
  3. J.A. Turner, Science, 2004, 305(5686), 972-974. https://doi.org/10.1126/science.1103197
  4. S. Chu, A. Majumdar, Nature, 2012, 488(7411), 294-303. https://doi.org/10.1038/nature11475
  5. G.P. Peters, G. Marland, C.Le Quere, T. Boden, J.G. Canadell, M.R. Raupach, Nat. Clim. Change, 2012, 2(1), 2-4. https://doi.org/10.1038/nclimate1332
  6. J. Sun, H.W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, Y. Cui, Nat. Nanotechnol., 2015, 10(11), 980-985. https://doi.org/10.1038/nnano.2015.194
  7. D. Larcher, J.M. Tarascon, Nat. Chem., 2015, 7(1), 19-28. https://doi.org/10.1038/nchem.2085
  8. S. Megahed, B. Scrosati, J. Power Sources, 1994, 51, 79-104. https://doi.org/10.1016/0378-7753(94)01956-8
  9. P. Simon, Y. Gogotsi, Nat. Mater., 2008, 7(11), 845-854. https://doi.org/10.1038/nmat2297
  10. S.M. Haile, Mater. Today, 2003, 6(9), 24-33. https://doi.org/10.1016/S1369-7021(03)00922-2
  11. J. Baker, Energy. Polycy., 2008, 36(12), 4368-4373. https://doi.org/10.1016/j.enpol.2008.09.040
  12. P. Simon, Y. Gogotsi, B. Dunn, Science, 2014, 343(6176), 1210-1211. https://doi.org/10.1126/science.1249625
  13. A.V. Patil, D.W. Shin, J.W. Choi, D.S. Paik, S.J. Yoon, Mater. Res. Bull., 2008, 43(8-9), 1913-1942. https://doi.org/10.1016/j.materresbull.2007.08.031
  14. Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev., 2015, 44(17), 5926-5940. https://doi.org/10.1039/C4CS00442F
  15. M. Armand, J.M. Tarascon, Nature, 2008, 451(7179), 652-657. https://doi.org/10.1038/451652a
  16. J.M. Tarascon, M. Armand, Nature, 2001, 414(6861), 359-367. https://doi.org/10.1038/35104644
  17. T. Placke, R. Kloepsch, S. Duhnen, M. Winter, J. Solid State Electrochem., 2017, 21(7), 1939-1964. https://doi.org/10.1007/s10008-017-3610-7
  18. D. Andre, S.J. Kim, P. Lamp, S.F. Lux, F. Maglia, O. Paschos, B. Stiaszny, J. Mater. Chem. A, 2015, 3, 6709-6710. https://doi.org/10.1039/C5TA00361J
  19. E.J. Berg, C. Villevieille, D. Streich, S. Trabesinger, P. Novak, J. Electrochem. Soc., 2015, 162(14), A2468-A2475. https://doi.org/10.1149/2.0081514jes
  20. G.E. Blomgren, J. Electrochem. Soc., 2017, 164(1), A5019-A5025. https://doi.org/10.1149/2.0251701jes
  21. J. Lu, Z. Chen, Z. Ma, F. Pan, L.A. Curtiss, K. Amine, Nat. Nanotechnol., 2016, 11(12), 1031-1038. https://doi.org/10.1038/nnano.2016.207
  22. N. Yabuuchi, K. Kubota, M. Dahbi, S. Komata, Chem. Rev., 2014, 114(23), 11636-11682. https://doi.org/10.1021/cr500192f
  23. W. Zhang, Y. Liu, Z. Guo, Sci. Adv., 2019, 5(5), eaav7412(1-13). https://doi.org/10.1126/sciadv.aav7412
  24. W. Zhang, W.K. Pang, V. Sencadas, Z. Guo, Joule, 2018, 2, 1534-1547. https://doi.org/10.1016/j.joule.2018.04.022
  25. P.V. Braun, J. Cho, J.H. Pikul, W.P. King, H. Zhang, Curr. Opin. Solid State Mater. Sci., 2012, 16(4), 186-198. https://doi.org/10.1016/j.cossms.2012.05.002
  26. G. Xu, Q. Wang, J. Fang, Y. Xu, J. Li, L. Huang, S.G. Sun, J. Mater. Chem. A, 2014, 2(47), 19941-19962. https://doi.org/10.1039/C4TA03823A
  27. P.G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed., 2008, 47(16), 2930-2946. https://doi.org/10.1002/anie.200702505
  28. Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev., 2015, 44(17), 5926-5940. https://doi.org/10.1039/C4CS00442F
  29. S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Angew, Chem. Int. Ed., 2012, 51(40), 9994-10024. https://doi.org/10.1002/anie.201201429
  30. G. Ceder, Y. M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, B. Huang, Nature, 1998, 392(6677), 694-696. https://doi.org/10.1038/33647
  31. J. Gao, S. Q. Shi, H. Li, Chin. Phys. B, 2016, 25(1), 018210(1-24). https://doi.org/10.1088/1674-1056/25/1/018210
  32. J.B. Goodenough, Y. Kim, Chem. Mater., 2010, 22(3), 587-603. https://doi.org/10.1021/cm901452z
  33. J.K. Park (Eds.), Principles and Applications of Lithium Secondary Batteries, Wiley-VCH Germany, 2012.
  34. H. Berg, K. Goransson, B. Nolang, J.O. Thomas, J. Mater. Chem., 1999, 9, 2813-2820. https://doi.org/10.1039/a905575d
  35. J.B. Goodenough, K.S. Park, J. Am. Chem. Soc., 2013, 135(4), 1167-1176. https://doi.org/10.1021/ja3091438
  36. A. Van der Ven, J. Bhattacharya, A.A. Belak, Acc. Chem. Res., 2013, 46(5), 1216-1225. https://doi.org/10.1021/ar200329r
  37. M. Hu, X. Pang, Z. Zhou, J. Power Sources, 2013, 237, 229-242. https://doi.org/10.1016/j.jpowsour.2013.03.024
  38. G. Ceder, MRS Bull., 2011, 35(9), 693-701. https://doi.org/10.1557/mrs2010.681
  39. K. Xu, Chem. Rev., 2014, 114(23), 11503-11618. https://doi.org/10.1021/cr500003w
  40. J.B. Goodenough, J. Solid State Electrochem., 2012, 16(6), 2019-2029. https://doi.org/10.1007/s10008-012-1751-2
  41. M.D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M.S. Whittingham, Y.S. Meng, A. Van der Ven, Adv. Energy Mater., 2017, 7(20), 1602888(1-33). https://doi.org/10.1002/aenm.201602888
  42. K. Toyoura, Y. Koyama, A. Kuwabara, F. Oba, I. Tanaka, Phys. Rev. B, 2008, 78(21), 214303(1-12). https://doi.org/10.1103/physrevb.78.214303
  43. G. Chen, L. Yan, H. Luo, S. Guo, Adv. Mater., 2016, 28(35), 7580-7602. https://doi.org/10.1002/adma.201600164
  44. N. Liu, W. Li, M. Pasta, Y. Cui, Front. Phys., 2014, 9(3), 323-350. https://doi.org/10.1007/s11467-013-0408-7
  45. A.S. Arico, P.G. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwij, Nat. Mater., 2005, 4(5), 366-377. https://doi.org/10.1038/nmat1368
  46. Q. Xu, R.M. Rioux, M.D. dickey, G.M. Whitesides, Acc. Chem. Res., 2008, 41(12), 1566-1577. https://doi.org/10.1021/ar700194y
  47. A.R. Tao, J. Huang, P. Yang, Acc. Chem. Res., 2008, 41(12), 1662-1673. https://doi.org/10.1021/ar8000525
  48. Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev., 2015, 44(17), 5926-5940. https://doi.org/10.1039/C4CS00442F
  49. N. Mahmood, T.Y. Tang, Y.L. Hou, Adv. Energy Mater., 2016, 6(17), 1600374(1-22). https://doi.org/10.1002/aenm.201600374
  50. M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, Chem. Rev., 2013, 113(7), 5364-5457. https://doi.org/10.1021/cr3001884
  51. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J. Zhang, Energy Environ. Sci., 2014, 7(2), 513-537. https://doi.org/10.1039/C3EE40795K
  52. N.A. Kaskhedikar, J. Maier, Adv. Mater., 2009, 21(25-26), 2664-2680. https://doi.org/10.1002/adma.200901079
  53. B.Y. Guan, L. Yu, J. Li, X.W. Lou, Sci. Adv., 2016, 2(3), e1501554(1-8). https://doi.org/10.1126/sciadv.1501554
  54. G.N. Zhu, Y.G. Wang, Y.Y. Xia, Energy Environ. Sci., 2012, 5(50, 6652-6667. https://doi.org/10.1039/c2ee03410g
  55. M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Adv. Mater., 1998, 10(10), 725-763. https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
  56. M.D. Levi, D. Aurbach, J. Phys. Chem. B, 1997, 101(23), 4641-4647. https://doi.org/10.1021/jp9701911
  57. K. Persson, V.A. Sethuraman, L.J. Hardwick, Y. hinuma, Y.S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, G. Ceder, J. Phys. Chem. Lett., 2010, 1(8), 1176-1180. https://doi.org/10.1021/jz100188d
  58. Y. Qi, H. Guo, L.G. Hector Jr., A. Timmons, J. Electrochem. Soc., 2010, 157(5), A558-A566. https://doi.org/10.1149/1.3327913
  59. Y. Yamada, K. Usui, C.H. Chiang, K. Kikuchi, K. Furukawa, A. Yamada, ACS Appl. Mater. Interfaces, 2014, 6(140, 10892-10899. https://doi.org/10.1021/am5001163
  60. R.A. Huggins (Eds.), Advanced Batteries-Materials Science Aspects, Springer Science & Business Media, New York, USA, 2009.
  61. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R. S. Ruoff, Science, 2009, 324, 1312-1314. https://doi.org/10.1126/science.1171245
  62. D. Bar-Tow, E. Peled, L. Burstein, J. Electrochem. Soc., 1999, 146(3), 824-832. https://doi.org/10.1149/1.1391688
  63. D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, Electrochim. Acta, 1999, 45(1), 67-86. https://doi.org/10.1016/S0013-4686(99)00194-2
  64. Y. Wang, W. Tian, L. Wang, H. Zhang, J. Liu, T. Peng, L. Pan, X. Wang, M. Wu, ACS Appl. Mater. Interfaces, 2018, 10(6), 5577-5585. https://doi.org/10.1021/acsami.7b18313
  65. G. Nava, J. Schwan, M.G. Boebinger, M.T. McDowell, L. Mangolini, Nano Lett., 2019, 19(10), 7236-7245. https://doi.org/10.1021/acs.nanolett.9b02835
  66. S. Villagomez-Salas, P. Manikandan, S.F.A. Guzman, V.G. Pol, ACS Omega, 2018, 3(12), 17520-17527. https://doi.org/10.1021/acsomega.8b02290
  67. H. Zheng, Q. Qu, L. Zhang, G. Liu, V.S. Battaglia, RSC Adv., 2012, 2, 4904-4912. https://doi.org/10.1039/c2ra20536j
  68. R. Mukherjee, A.V. Thomas, D. Datta, E. Singh, J. Li, O. Eksik, V.B. Shenoy, N. Koratkar, Nat. Commun., 2014, 5, 3710(1-10). https://doi.org/10.1038/ncomms4710
  69. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Mater. Today, 2015, 18(5), 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
  70. J. Liu, D. Xue, Nanoscale Res. Lett., 2010, 5(10), 1525-1534. https://doi.org/10.1007/s11671-010-9728-5
  71. C.M. Hayner, X. Zhao, H.H. Kung, Annu. Rev. Chem. Biomol. Eng., 2012, 3, 445-471. https://doi.org/10.1146/annurev-chembioeng-062011-081024
  72. M. Senami, Y. Ikeda, A. Fukushima, A. Tachibana, AIP Adv., 2011, 1, 042106(1-12). https://doi.org/10.1063/1.3651182
  73. B.J. Landi, M.J. Ganter, C.D. Cress, R.A. Dileo, R.P. Raffaelle, Energy Environ. Sci., 2009, 2, 638-654. https://doi.org/10.1039/b904116h
  74. C. Zhao, Y. Lu, H. Liu, L. Chen, RSC Adv., 2019, 9, 17299-17307. https://doi.org/10.1039/C9RA03235E
  75. C. De Las Casa, W.A. Li, J. Power Sources, 2012, 208, 74-85. https://doi.org/10.1016/j.jpowsour.2012.02.013
  76. R. Fang, K. Chen, L. Yin, Z. Sun, F. Li, H.M. Cheng, Adv. Mater., 2019, 31, 1800863(1-22). https://doi.org/10.1002/adma.201800863
  77. L.W. Ji, Z. Lin, M. Alcoutlabi, X.W. Zhang, Energy Environ. Sci., 2011, 4(8), 2682-2699. https://doi.org/10.1039/c0ee00699h
  78. C. Xu, D. Niu, N. Zheng, H. Yu, J. He, Y. Li, ACS Sustainable Chem. Eng., 2018, 6, 5999-6007. https://doi.org/10.1021/acssuschemeng.7b04617
  79. K. Omichi, G. Ramos-Sanchez, R. Rao, N. Pierce, G. Chen, P.B. Balbuena, A.R. Harutyunyan, J. Electrochem. Soc., 2015, 162(10), A2106-A2115. https://doi.org/10.1149/2.0591510jes
  80. K. Teshima, H. Inagaki, S. Tanaka, K. Yubuta, M. Hozumi, K. Kohama, T. Shishido, S. Oishi, Cryst. Growth Des., 2011, 11(10), 4401-4405. https://doi.org/10.1021/cg200578r
  81. B. Zhao, R. Ran, M. Liu, Z. Shao, Mater. Sci. Eng. R Rep., 2015, 98, 1-71. https://doi.org/10.1016/j.mser.2015.10.001
  82. D. Doughty, E.P. Rother, Electrochem. Soc. Interface, 2012, 21(2), 37-44.
  83. S.Y. Yin, L. Song, X.Y. Wang, M.F. Zhang, K.L. Zhang, Y. X. Zhang, Electrochim. Acta, 2009, 54(24), 5629-5633. https://doi.org/10.1016/j.electacta.2009.04.067
  84. H.K. Song, K.T. Lee, M.G. Kim, L.F. Nazar, J. Cho, Adv. Funct. Mater., 2010, 20, 3818-3834. https://doi.org/10.1002/adfm.201000231
  85. W.J.H. Borghols, M. Wagemaker, U. Lafont, E.M. Kelder, F.M. Mulder, J. Am. Chem. Soc., 2009, 131(49), 17786-17792. https://doi.org/10.1021/ja902423e
  86. L. Wang, Q. Xiao, Z. Li, G. Lei, P. Zhang, M. Wei, J. Solid State Electrochem., 2012, 16, 3307-3313. https://doi.org/10.1007/s10008-012-1776-6
  87. X. Feng, H. Zou, H. Xiang, X. Guo, T. Zhou, Y. Wu, W. Xu, P. Yan, C. Wang, J.G. Zhang, Y. Yu, ACS Appl. Mater. Interfaces, 2016, 8(26), 16718-16726. https://doi.org/10.1021/acsami.6b04752
  88. D. Shao, J. He, Y. Luo, W. Liu, X. Yu, Y. Fang, J. Solid State Elecrochem., 2012, 16(6), 2047-2053. https://doi.org/10.1007/s10008-011-1604-4
  89. L. Zhao, Y.S. Hu, H. Li, Z.X. Wang, L.Q. Chen, Adv. Mater., 2011, 23(11), 1385-1388. https://doi.org/10.1002/adma.201003294
  90. D.H. Long, M.G. Jeong, Y.S. Lee, W. Choi, J.K. Lee, I.H. Oh, H.G. Jung, ACS Appl. Mater. Interfaces, 2015, 7(19), 10250-10257. https://doi.org/10.1021/acsami.5b00776
  91. L. Shen, H. Li, E. Uchaker, X. Zhang, G. Cao, Nano Lett., 2012, 12(11), 5673-5678. https://doi.org/10.1021/nl302854j
  92. A.G. Dylla, G. Henkelman, K.J. Stevenson, Acc. Chem. Res., 2013, 46(5), 1104-1112. https://doi.org/10.1021/ar300176y
  93. V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruna, P. Simon, B. Dunn, Nat. Mater., 2013, 12, 518-522. https://doi.org/10.1038/nmat3601
  94. T. Ohzuku, K. Sawai, T. Hirai, J. Power Sources, 1987, 19, 287-299. https://doi.org/10.1016/0378-7753(87)87005-2
  95. E. Lim, C. Jo, H. Kim, M.H. kim, Y. Mun, J. Chun, Y. Ye, J. Hwang, K.S. Ha, K.C. Roh, ACS Nano, 2015, 9(7), 7497-7505. https://doi.org/10.1021/acsnano.5b02601
  96. L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling, D. Long, ACS Nano, 2015, 9(11), 11200-11208. https://doi.org/10.1021/acsnano.5b04737
  97. C.M. Park, J.H. Kim, H. Kim, H.J. Sohn, Chem. Soc. Rev., 2010, 39(8), 3115-3141. https://doi.org/10.1039/b919877f
  98. Y. Yang, S. Liu, X. Bian, J. Feng, Y. An, C. Yuan, ACS Nano, 2018, 12(3), 2900-2908. https://doi.org/10.1021/acsnano.8b00426
  99. R.A. Huggins, B.A. Boukamp, US patent 4,436,796, 1984.
  100. J. Yang , M. Winter, J.O. Besenhard, Solid State Ionics, 1996, 90, 281-287. https://doi.org/10.1016/S0167-2738(96)00389-X
  101. M.G. Kim, J. Cho, Adv. Funct. Mater., 2009, 19(10), 1497-1514. https://doi.org/10.1002/adfm.200801095
  102. M. Pharr, K.J. Zhao, X.W. Wang, Z.G. Suo, J.J. Vlassak, Nano Lett., 2012, 12(9), 5039-5047. https://doi.org/10.1021/nl302841y
  103. N. Wang, Z. Bai, Y. Qian, J. Yang, Adv. Mater, 2016, 28, 4126-4133. https://doi.org/10.1002/adma.201505918
  104. L.P. Xu, C. Kim, A.K. Shukla, A.G. Dong, T.M. Mattox, D.J. Milliron, J. Cabana, Nano Lett., 2013, 13(4), 1800-1805. https://doi.org/10.1021/nl400418c
  105. H. Peng, R. Li, J. Hu, W. Deng, F. Pan, Appl. Mater. Interfaces, 2016, 8(19), 12221-12227. https://doi.org/10.1021/acsami.6b03383
  106. Y. Liu, N.S. Hudak, D.L. Huber, S.J. Limmer, J.P. Sullivan, J.Y. Huang, Nano Lett., 2011, 11(10), 4188-4194. https://doi.org/10.1021/nl202088h
  107. P. Xue, N. Wang, Z. Fang, Z. Lu, X. Xu, L. Wang, Y. Du, X. Ren, Z. Bai, S. Dou, G. Yu, Nano Lett., 2019, 19, 1998-2004. https://doi.org/10.1021/acs.nanolett.8b05189
  108. C.J. Wen, R.A. Huggins, J. Solid State Chem., 1981, 37(3), 271-278. https://doi.org/10.1016/0022-4596(81)90487-4
  109. P. Roy, S.K. Srivastava, J. Mater. Chem. A, 2015, 3, 2454-2484. https://doi.org/10.1039/C4TA04980B
  110. Z. Wang, M. Gu, Y. Zhou, X. Zu, J.G. Connell, J. Xiao, D. Perea, L.J. Lauhon, J. Bang, S. Zhang, C. Wang, F. Gao, Nano Lett., 2013, 13(9), 4511-4516. https://doi.org/10.1021/nl402429a
  111. C.S. Fuller, J.C. Severiens, Phys. Rev., 1954, 96(1), 21-25. https://doi.org/10.1103/PhysRev.96.21
  112. L.Y. Lim, S. Fan, H.H. Hng, M.F. Toney, Adv. Energy Mater., 2015, 5(15), 1500599(1-8). https://doi.org/10.1002/aenm.201500599
  113. M. Pharr, Y.S. Choi, D. Lee, K. H. Oh, J.J. Vlassak, J. Power Sources, 2016, 304, 164-169. https://doi.org/10.1016/j.jpowsour.2015.11.036
  114. N. Nitta, G. Yushin, Part. Part. Syst. Charact., 2013, 31(3), 317-336. https://doi.org/10.1002/ppsc.201300231
  115. B. Wang, B. Luo, X. Li, L. Zhi, Materials Today, 2012, 15(12), 544-552. https://doi.org/10.1016/S1369-7021(13)70012-9
  116. R. Demir-Cakan, Y.S. Hu, M. Antonietti, J. Maier, M.M. Titirici, Chem. Mater., 2008, 20(4), 1227-1229. https://doi.org/10.1021/cm7031288
  117. Y. Liu, N.S. Hudak, D.L. Huber, S.J. Limmer, J.P. Sullivan, J.Y. Huang, Nano Lett., 2011, 11(10), 4188-4194. https://doi.org/10.1021/nl202088h
  118. J. Qian, D. Qiao, X. Ai, Y. Cao, H. Yang, Chem. Commun., 2012, 48(71), 8931-8933. https://doi.org/10.1039/c2cc34388f
  119. L. Zhang, H.B. Wu, X.W. Lou, Adv Energy Mater., 2014, 4(4), 1300958(1-11). https://doi.org/10.1002/aenm.201300958
  120. J. Cabana, L. Monconduit, D. Larcher, M.R. Palacin, Adv. Mater., 2010, 22, E170-E192. https://doi.org/10.1002/adma.201000717
  121. D. Bresser, S. Passerini, B. Scrosati, Energy Environ. Sci., 2016, 9, 3348-3367. https://doi.org/10.1039/C6EE02346K
  122. C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Angew. Chem. Int. Ed., 2014, 53(6), 1488-1504. https://doi.org/10.1002/anie.201303971
  123. X. Xu, W. Liu, Y. Kim, J. Cho, Nano Today, 2014, 9(5), 604-630. https://doi.org/10.1016/j.nantod.2014.09.005
  124. S.M. Dong, X. Chen, X.Y. Zhang, G.L. Cui, Chem. Rev., 2013, 257(13-14), 1946-1956.
  125. K. Rui, Z.Y. Wen, Y. Lu, J. Jin, C. Shen, Adv. Energy Mater., 2015, 5(7), 1401716(1-11). https://doi.org/10.1002/aenm.201401716
  126. Y. Xiao, J.Y. Hwang, I. Belharouak, Y.K. Sun, Nano Energy, 2017, 32, 320-328. https://doi.org/10.1016/j.nanoen.2016.12.053
  127. H.J. Oh, C.H. Jo, C.S. Yoon, H. Yashiro, S.J. Kim, S. Passerini, Y.K. Sun, S.T. Myung, NPG Asia Mater., 2016, 8(5), e270(1-8).
  128. D.Y. Park, Y.K. Sun, S.T. Myung, J. Power Sources, 2015, 280, 1-4. https://doi.org/10.1016/j.jpowsour.2015.01.042
  129. T. Yoon, C. Chae, Y.K. Sun, X. Zhao, H.H. Kung, J.K. Lee, J. Mater. Chem., 2011, 21(43), 17325-17330. https://doi.org/10.1039/c1jm13450g
  130. K.A. Kwon, H.S. Lim, Y.K. Sun, K.D. Suh, J. Phys. Chem. C, 2014, 118(16), 2897-2903.
  131. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, Nat. Mater., 2005, 4(5), 366-377. https://doi.org/10.1038/nmat1368
  132. Y. Wang, J. Yang, H. Qiu, I. Peng, W. Li, Nanoscale, 2015, 7(38), 15983-15989. https://doi.org/10.1039/C5NR04221F
  133. Y. Yang, X. Fan, G. Casillas, Z. Peng, G. Ruan, G. Wang, M.J. Yacaman, J.M. Tour, ACS Nano, 2014, 8(4), 3939-3946. https://doi.org/10.1021/nn500865d
  134. X. Zhou, L. J. Wan, Y.G. Guo, Adv. Mater., 2013, 25(15), 2152-2157. https://doi.org/10.1002/adma.201300071
  135. Z.S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H.M. Cheng, ACS Nano, 2010, 4(6), 3187-3194. https://doi.org/10.1021/nn100740x
  136. N. Liu, Z. Lu, J. Zhao, M.T. McDowell, H.W. Lee, W. Zhao, Y. Cui, Nat. Nanotechnol., 2014, 9(3), 187-192. https://doi.org/10.1038/nnano.2014.6
  137. Y. Kim, J.H. Lee, S. Cho, Y. Kwon, I. In, J. Lee, N.H. You, E. Reichmanis, H. Ko, K.T. Lee, H.K. Kwon, D.H. Ko, H. Yang , B. Park, ACS Nano, 2014, 8(7), 6701-6712. https://doi.org/10.1021/nn500218m
  138. J.S. Cho, Y.C. Kang, Small, 2015, 11(36), 4673-4681. https://doi.org/10.1002/smll.201500940
  139. M.S. Whittingham, Science, 1976, 192(4244), 1126-1127. https://doi.org/10.1126/science.192.4244.1126
  140. J. Zhao, Y. Zhang, Y. Wang, H. Li, Y. Peng, J. Energy Chem., 2018, 27(6), 1536-1554. https://doi.org/10.1016/j.jechem.2018.01.009
  141. Y.S. Su, A. Manthiram, Nat. Commun., 2012, 3(1166), 1-6.
  142. M. Cuisinier, P.E. Cabelguen, B.D. Adams, A. Garsuch, M. Balasubramanian, L.F. Nazar, Energy Environ. Sci., 2014, 7(8), 2697-2705. https://doi.org/10.1039/C4EE00372A
  143. N. Mahmood, C. Zhang, H. Yin, Y. Hou, J. Mater. Chem. A, 2014, 2(1), 15-32. https://doi.org/10.1039/C3TA13033A
  144. N. Mahmood, C. Zhang, J. Jiang, F. Liu, Y. Hou, Chemistry, 2013, 19(16), 5183-5190. https://doi.org/10.1002/chem.201204549
  145. Q. Wang, R. Zou, W. Xia, J. Ma, B. Qiu, A. Mahmood, R. Zhao, Y. Yang, D. Xia, Q. Xu, Small, 2015, 11(21), 2511-2517. https://doi.org/10.1002/smll.201403579
  146. N. Mahmood, C. Zhang, Y. Hou, Small, 2013, 9(8), 1321-1328. https://doi.org/10.1002/smll.201203032
  147. X. Wang, G. Li, M.H. Seo, F.M. Hassan, M.A. Hoque, Z. Chen, Adv. Energy Mater., 2015, 5(17), 1500716(1-8). https://doi.org/10.1002/aenm.201500716
  148. F. Bozheyev, A. Zhexembekova, S. Zhumagali, A. Molkenoa, Z. Bakenov, Materials Today, 2017, 4(3), 4567-4571. https://doi.org/10.1016/j.matpr.2017.04.031
  149. S. Zhang, B.V.R. Chowdari, Z. Wen, J. Jin, J. Yang, ACS Nano, 2015, 9(12), 12464-12472. https://doi.org/10.1021/acsnano.5b05891
  150. M. Wang, G.D. Li, H.Y. Xu, Y.T. Qian, J. Yang, ACS Appl. Mater. Interfaces, 2013, 5(3), 1003-1008. https://doi.org/10.1021/am3026954
  151. J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, ACS Nano, 2015, 9(4), 3837-3848. https://doi.org/10.1021/nn506850e
  152. X. Wang, J. Tian, X. Cheng, R. Na, D. Wang, Z. Shan, ACS Appl. Mater. Interfaces, 2018, 10, 35953-35962. https://doi.org/10.1021/acsami.8b11593
  153. K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull., 1980, 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4
  154. J.B. Goodenough, Y. Kim, Chem. Mater., 2010, 22(3), 587-603. https://doi.org/10.1021/cm901452z
  155. W. Liu, P. Oh, X.E. Liu, M.J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Angew. Chem. Int. Ed., 2015, 54, 4440-4457. https://doi.org/10.1002/anie.201409262
  156. W.J. Tang, Z.X. Chen, F. Xiong, F. Chen, C. Huang, Q. Gao, T.Z. Wang, Z.H. Yang, W.X. Zhang, J. Power Sources, 2019, 412, 246-254. https://doi.org/10.1016/j.jpowsour.2018.11.062
  157. M. Hu, X.L. Pang, Z. Zhou, J. Power Sources, 2013, 237(4), 229-242. https://doi.org/10.1016/j.jpowsour.2013.03.024
  158. R. Chen, T. Zhao, X. Zhang, L. Li, F. Wu, Nanoscale Horiz., 2016, 1(6), 423-444. https://doi.org/10.1039/C6NH00016A
  159. J. Xiao, J.M. Zheng, X.L. Li, Y.Y. Shao, J.G. Zhang, Nanotechnology, 2013, 24, 424004(1-7). https://doi.org/10.1088/0957-4484/24/42/424004
  160. J. Shim, S. Lee, S.S. Park, Chem. Mater., 2014, 26, 2537-2543. https://doi.org/10.1021/cm403846a
  161. N. Wu, Y. Zhang, Y. Guo, S. Liu, H. Liu, H. Wu, ACS Appl. Mater. Interfaces, 2016, 8, 2723-2731. https://doi.org/10.1021/acsami.5b10977
  162. Y. Makimura, T. Ohzuku, J. Power Sources, 2003, 119-121, 156-160. https://doi.org/10.1016/S0378-7753(03)00170-8
  163. M.S. Islam, R.A. Davies, J.D. Gale, Chem. Mater., 2003, 15(22), 4280-4286. https://doi.org/10.1021/cm031098u
  164. Y. Koyama, Y. Makimura, I. Tanaka, H. Adachi, T. Ohzuku, J. Electrochem. Soc., 2004, 151(9), A1499-A1506. https://doi.org/10.1149/1.1783908
  165. E. Rossen, C.D. W. Jones, J.R. Dahn, Solid State Ionics, 1992, 57(3-4), 311-318. https://doi.org/10.1016/0167-2738(92)90164-K
  166. B. Huang, K. Qian, Y. Liu, D. Liu, K. Zhou, F. Kang, B. Li, ACS Sustainable Chem., 2019, 7(7), 7378-7385. https://doi.org/10.1021/acssuschemeng.9b00621
  167. J. Kasnatscheew, M. Evertz, B. Streipert, R. Wagner, S. Nowak, I.C. Laskovic, M. Winter, J. Phys. Chem. C, 2017, 121(3), 1521-1529. https://doi.org/10.1021/acs.jpcc.6b11746
  168. K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao, J. Chen, Chem. Soc. Rev., 2015, 44(3), 699-728. https://doi.org/10.1039/C4CS00218K
  169. H. Zheng, X. Chen, Y. Yang, L. Li, G. Li, Z. Guo, C. Feng, ACS Appl. Mater. Interfaces, 2017, 9, 39560-39568. https://doi.org/10.1021/acsami.7b10264
  170. C. Liu, G. Cao, Z. Wu, J. Hu, H. Wang, G. Shao, ACS Appl. Mater. Interfaces, 2019, 11, 31991-31996. https://doi.org/10.1021/acsami.9b10160
  171. Y.L. Ding, J. Xie, G.S. Cao, T.J. Zhu, H.M.Yu, X.B. Zhao. Adv. Funct. Mater., 2011, 21(2), 348-355. https://doi.org/10.1002/adfm.201001448
  172. X. Zhang, F. Cheng, K. Zhang, Y. Liang, S. Yang, J. Liang, J. Chen, RSC Adv., 2012, 2(13), 5669-5675. https://doi.org/10.1039/c2ra20669b
  173. H.W. Lee, P. Muralidharan, R. Ruffo, C.M. Mari, Y. Cui, D.K. Kim, Nano Lett., 2010, 10, 3852-3856. https://doi.org/10.1021/nl101047f
  174. S. Lee, Y. Cho, H.K. Song, K.T. Lee, J. Cho, Angew. Chem. Int. Ed., 2012, 51(35), 8748-8752. https://doi.org/10.1002/anie.201203581
  175. F. Wang, L. Suo, Y. Liang, C. Yang, F. Han, T. Gao, C. Wang, Adv. Energy Mater., 2017, 7, 1600922. https://doi.org/10.1002/aenm.201600922
  176. J. Yang, X. Han, X. Zhang, F. Cheng, J. Chen, Nano Res., 2013, 6, 679-687. https://doi.org/10.1007/s12274-013-0343-5
  177. J. Cabana, M. Casas-Cabanas, F.O. Omenya, N.A. Chernova, D. Zeng, M.S. Whittingham, C.P. Grey, Chem. Mater., 2012, 24(15), 29522964.
  178. S. Li, G. Ma, B. Guo, Z.H. Yang, X.M. Fan, Z.X. Chen, W.X. Zhang, Ind. Eng. Chem. Res., 2016, 55, 9352-9361. https://doi.org/10.1021/acs.iecr.6b02463
  179. G. Xu, Z. Liu, C. Zhang, G. Cui, L. Chen, J. Mater. Chem. A, 2015, 3, 4092-4123. https://doi.org/10.1039/C4TA06264G
  180. C. Jiang, Z. Tang, S. Deng, Y. Hong, S. Wang, Z. Zhang, RSC Adv., 2017, 7, 3746-3751. https://doi.org/10.1039/C6RA25802F
  181. Z.H. Xiao, Q.Q. Cui, X.L. Li, H.L. Wang, Q. Zhou, Ionics, 2015, 21, 1261-1267. https://doi.org/10.1007/s11581-014-1305-y
  182. P. Barpanda, L. Lander, S. Nishimura, A. Yamada, Adv. Energy Mater., 2018, 8, 1703055. https://doi.org/10.1002/aenm.201703055
  183. C. Orendorff, D. Doughty, Electrochem. Soc. Interface, 2012, 21(2), 35-66. https://doi.org/10.1149/2.F02122if
  184. Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song, T. Liu, ACS Appl. Mater. Interfaces, 2014, 6(12), 9236-9244. https://doi.org/10.1021/am501373h
  185. K. Zhang, Z. Hu, H. Gao, H. Feng, F. Cheng, Z. Tao, J. Chen, Sci. Adv. Mater., 2013, 5(11), 1676-1685. https://doi.org/10.1166/sam.2013.1627
  186. J. Li, S. Luo, X. Ding, Q. Wang, P. He, ACS Sustainable Chem. Eng., 2018, 6, 16683-16691. https://doi.org/10.1021/acssuschemeng.8b03935
  187. C.A.J. Fisher, N. Kuganathan, M.S. Islam, J. Mater. Chem. A, 2013, 1(13), 4207-4214. https://doi.org/10.1039/c3ta00111c
  188. B. Xu, D. Qian, Z. Wang, Y.S. Meng, Mater. Sci. Eng. R, 2012, 73(5-6), 51-65. https://doi.org/10.1016/j.mser.2012.05.003
  189. L. Li, F. Meng, S. Jin, Nano Lett., 2012, 12(11), 6030-6037. https://doi.org/10.1021/nl303630p
  190. W.T. Gu, A. Magasinski, B. Zdyrko, G. Yushin, Adv. Energy Mater., 2015, 5(4), 1401148(1-7).
  191. Z.W. Fu, C.L. Li, W.Y. Liu, J. Ma, Y. Wang, Q.Z. Qin, J. Electrochem. Soc., 2005, 152(2), E50-E55. https://doi.org/10.1149/1.1839512
  192. W. J. Zhang, J. Power Sources, 2011, 196(1), 13-24. https://doi.org/10.1016/j.jpowsour.2010.07.020

Cited by

  1. Evidence for the Coexistence of Polysulfide and Conversion Reactions in the Lithium Storage Mechanism of MoS2 Anode Material vol.33, pp.6, 2020, https://doi.org/10.1021/acs.chemmater.0c02992
  2. Dual lithium storage of Pt electrode: alloying and reversible surface layer vol.9, pp.34, 2020, https://doi.org/10.1039/d1ta04379j
  3. Selective Anionic Redox and Suppressed Structural Disordering Enabling High‐Energy and Long‐Life Li‐Rich Layered‐Oxide Cathode vol.11, pp.47, 2020, https://doi.org/10.1002/aenm.202102311
  4. Surface nitridation of Li4Ti5O12 by thermal decomposition of urea to improve quick charging capability of lithium ion batteries vol.11, pp.1, 2020, https://doi.org/10.1038/s41598-021-92550-z
  5. Nano and Battery Anode: A Review vol.16, pp.1, 2021, https://doi.org/10.1186/s11671-021-03631-x
  6. Triggering anomalous capacity by nanoengineered ordered mesoporous structure for Co3O4 anode material in Li-ion rechargeable batteries vol.575, 2022, https://doi.org/10.1016/j.apsusc.2021.151744