References
- A. Suprem, N. Mahalik, and K. Kim, "A review on application of technology systems, standards and interfaces for agriculture and food sector," Computer Standards & Interfaces, vol. 35, no. 4, pp. 355-364, 2013, DOI: 10.1016/j.csi.2012.09.002.
- D. Ball, B. Upcroft, G. Wyeth, P. Corke, A. English, P. Ross, and A. Bate, "Vision-based obstacle detection and navigation for an agricultural robot," Journal of field robotics, vol. 33, no. 8, pp. 1107-1130, 2016, DOI: 10.1002/rob.21644.
- R. F. Carpio, C. Potena, J. Maiolini, G. Ulivi, N. B. Rosselló, E. Garone, and A. Gasparri, "A Navigation Architecture for Ackermann Vehicles in Precision Farming," IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1103-1110, 2020, DOI: 10.1109/LRA.2020.2967306.
- P. Huang, Z. Zhang, and X. Luo, "Feedforward plus pro-portional-integral-derivative controller for agricultural robot turning in headland," International Journal of Advanced Robotic Systems, vol. 17, no. 1, 2020, DOI: 10.1177/1729881419897678.
- M. Watanabe and K. Sakai, "Numerical analysis of steering instability in an agricultural tractor induced by bouncing and sliding," Biosystems Engineering, vol. 192, pp. 108-116, 2020, DOI: 10.1016/j.biosystemseng.2020.01.014.
- W. Purbowaskito and M. Telaumbanua, "Simulation Study of Kalman-Bucy filter Based Optimal Yaw Rate Control System for Autonomous Tractor," Earth and Environmental Science, vol. 355, no. 1, 2019.
- J. B. Han, K. M. Yang, D. H. Kim, and K. H. Seo, "A Modeling and Simulation based on the Multibody Dynamics for an Autonomous Agricultural Robot," In 2019 7th International Conference on Control (ICCMA), pp. 137-143. IEEE. 2019, DOI: 10.1109/ICCMA46720.2019.8988607.
- E. J. Haug, Computer aided kinematics and dynamics of mechanical systems, Boston: Allyn and Bacon, 1989, [Online], https://books.google.co.kr/books/about/Computer_Aided_Kinematics_and_Dynamics_o.html?id=nlZGAAAAYAAJ&redir_esc=y.
- C. Woo, N. U. Lee, and T. S. Yoon, "Mecanum wheel, Mobile robot, Trajectory tracking, Impedance control, Integral sliding mode control," Journal of Korea Robotics Society, vol. 13, no. 4, pp. 265-271, 2018, DOI: 10.7746/jkros.2018.13.4.256.
- H. Hong, J. B. Han, H. Song, S. Jung, S. S. Kim, W. S. Yoo, M. Won, and S. Joo, "Path Tracking Control of 6X6 Skid Steering Unmanned Ground Vehicle for Real Time Traversability," Transactions of the Korean Society of Mechanical Engineers - A, vol. 41, no. 7, pp. 599-605, 2017, DOI: 10.3795/KSME-A.2017.41.7.599.
- J. Kang, W. Kim, J. Lee, and K. Yi, "Design, Implementation, and Test of Skid Steering-based Autonomous Driving Controller for a Robotic Vehicle with Articulated Suspension," Journal of Mechanical Science and Technology, vol. 24, no. 3, pp. 793-800, 2010, DOI: 10.1007/s12206-010-0115-z.
- S. Hong, J.-S. Choi, H. W. Kim, M. C. Won, S. C. Shin, J. S. Rhee, and H. Park, "A Path Tracking Control Algorithm for Underwater Mining Vehicles," Journal of Mechanical Science and Technology, vol. 23, pp. 2030-2037, 2009, DOI: 10.1007/s12206-009-0436-y.
- K. Krzysztog and P. Dariusz, "Modeling and Control of a 4-wheel Skid-steering Mobile Robot," International journal of pplied mathematics and computer science, vol. 14, pp. 477-496, 2004, [Online], http://matwbn.icm.edu.pl/ksiazki/amc/amc14/amc1445.pdf.
- J. Yi, D. Song, J. Zhang, and Z. Goodwin, "Adaptive Trajectory Tracking Control of Skid-steering Mobile Robots," IEEE International Conference on Robotics and Automation, pp. 10-14, 2007, DOI: 10.1109/ROBOT.2007.363858.
-
M. H. Kim, H. J. Song, and S. S. Kim, "A non-iterative implicit integration method using a HHT-
$\alpha$ integrator for real-time analysis of multibody systems," Journal of Mechanical Science and Technology, vol. 33, no. 3, pp.1087-1096, 2019, DOI: 10.1007/s12206-019-0208-2.
Cited by
- A Study on the Environmental-Based Turning Characteristics of Multi-Purpose Agricultural Robots vol.16, pp.4, 2020, https://doi.org/10.7746/jkros.2021.16.4.319