DOI QR코드

DOI QR Code

Importance of Selecting The characterized Housekeeping Genes as Reference Genes in Various Species

다양한 종에서 하우스키핑 유전자 선택의 중요성

  • Chai, Han-Ha (Animal of Genomics and Bioinformatics Division, National Institute of Animal Science and Collage of Pharmacy, Chonnam National University) ;
  • Noh, Yun Jeong (Animal of Genomics and Bioinformatics Division, National Institute of Animal Science) ;
  • Roh, Hee-Jong (Animal of Genetic Resources Station, National Institute of Animal Science) ;
  • Lim, Dajeong (Animal of Genomics and Bioinformatics Division, National Institute of Animal Science)
  • 채한화 (국립축산과학원 동물유전체과, 전남대학교 약학대학) ;
  • 노윤정 (국립축산과학원 동물유전체과) ;
  • 노희종 (국립축산과학원 가축유전자원센터) ;
  • 임다정 (국립축산과학원 동물유전체과)
  • Received : 2020.06.01
  • Accepted : 2020.08.07
  • Published : 2020.08.31

Abstract

Housekeeping genes are expressed in cells of all organisms and perform basic cellular functions such as energy generation, substance synthesis, cell death, and cell defense. Accordingly, the expression levels of housekeeping genes are relatively constant, and thus they are used as reference genes in gene expression studies, such as protein expression and mRNA expression analysis of target genes. However, the levels of expression of these genes may be different among various tissues or cells and may change under certain circumstances. Therefore, it is important to select the best reference gene for specific gene expression research by exploring the stability of housekeeping gene expression. This review summarizes housekeeping genes found in humans, chickens, pigs, and rats in the literature and estimates expression stability using geNorm, NormFinder, and BestKeeper software. The most suitable reference housekeeping gene can selected based on expression stability according to the experimental conditions of the gene expression study and can thus be applied to data normalization.

하우스키핑 유전자는 에너지생성, 물질합성, 세포사멸 및 세포방어 등과 같은 세포의 기본적인 기능을 수행하기 때문에 모든 유기체의 세포에서 발현된다. 세포의 기본적인 기능을 유지하기 때문에 발현 수준이 상대적으로 일정하여 단백질 발현 및 목적 유전자의 mRNA 발현 분석 등과 같은 유전자 발현 연구에서 기준 유전자로 사용되고 있다. 그러나 이들 유전자의 발현 수준은 조직과 세포마다 다를 수 있으며, 특정 환경 하에서 변할 수 있다. 그러므로 하우스키핑 유전자의 발현 안정성을 탐색하여 유전자 발현 연구에서 최적의 기준 유전자를 선택하는 것이 중요하다. 이 리뷰는 문헌을 통해 인간, 닭, 돼지 그리고 쥐에서 발견된 하우스키핑 유전자를 요약하고, geNorm, NormFinder 그리고 BestKeeper 소프트웨어를 통해 발현 안정성을 추정하였다. 하우스키핑 유전자의 발현 안정성에 대한 탐색은 유전자 발현 연구에서 실험 조건에 따라 가장 적합한 기준 유전자를 선별할 수 있고, 데이터의 정규화를 위해 적용될 수 있다.

Keywords

References

  1. C. M. Chen, Y. L. Lu, C. P. Sio, G. C. Wu, W. S. Tzou, T. W. Pai, "Gene ontology based housekeeping gene selection for RNA-seq normalization" Methods. Vol.67, No.3, pp.354-363, June 2014. DOI: https://doi.org/10.1016/j.ymeth.2014.01.019
  2. R. D. Barber, D. W. Harmer, R. A. Coleman, B. J. Clark, "GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues" Physiol. Genomics. Vol.21, No.3, pp.389-395, May 2005. DOI: https://dx.doi.org/10.1152/physiolgenomics.00025.2005
  3. C. A. Hutchison, R. Y. Chuang, V. N. Noskov, N. Assad-Garcia, T. J. Deerinck, M. H. Elisman, J. Gill, K. Kannan, B. J. Karas, L. Ma, J. F. Pelletier, Z. Q. Qi, R. A. Richer, E. A. Strychalski, L. Sun, Y. Suzuki, B. Tsvetanova, K. S. Wise, H. Q. Smith, J. I. Glass, C. Merryman, D. G. Gibson, J. C. Venter, "Design and synthesis of a minimal bacterial genome" Science Vol.351, No. 6280, Mar. 2016. DOI: https://doi.org/10.1126/science.aad6253
  4. F. Muller, S. Colla, E. Aquilant, V. E. Manzo, G. Genovese, J. Lee, D. Eisenson, R. Narurkar, P. Deng, L. Nezi, M. Lee, B. Hu, J. Hu, E. Sahin, D. Ong, E. Flectcher-Sananikone, D. Ho, L. Kwong, C. Brennan, Y. A. Wang, L. Chin, R. A. DePinho, "Corrgendum: Passenger deletions generate therapeutic vulnerabilities in cancer" Nature. Vol.525, No.7568, pp.278-278, Jul. 2015. DOI: https://doi.org/10.1038/nature14609
  5. E. Eisenberg, E. Y. Lavanon, "Human housekeeping genes are compact" TRENDS. Vol.19, No.7, pp.362-365, July 2003. DOI: https://doi.org/10.1016/S0168-9525(03)00140-9
  6. C. I. Castillo-Davis, S. L. Mekhedov, D. L. Hartl, E. V. Koonin, F. A. Kondrashov, "Selection for short introns in highly expressed genes" Nature genetics. Vol.31, No.4, pp.415-418, July 2002. DOI: https://doi.org/10.1038/ng940
  7. A. E. Vinogradov, "Compactness of human housekeeping genes selection for economy or genomic design?" Trands in Genetics. Vol.20, No.5, pp.248-253, May 2004. DOI: https://doi.org/10.1016/j.tig.2004.03.006
  8. E. Eisenberg, E. Y. Levanon, "Human housekeeping genes, revisited" Trends in Genetics. Vol.29, No.10, pp.569-574, Oct. 2013. DOI: https://doi.org/10.1016/j.tig.2013.05.010
  9. Y. Zhang, D. Li, B. Sun, "Do housekeeping genes exist?" PLoSOne. Vol.10, No.5, May 2015. DOI: https://doi.org/10.1371/journal.pone.0123691
  10. F. Nazari, A. Parham, A. F. Maleki, "GAPDH, ${\beta}$-actin and ${\beta}2$-microglobulin, as three common reference genes, are not reliable for gene expression studies in equine adipose- and marrow-derived mesenchymal stem cells" J. Anim. Sci. Technol. Vol.57, No.18, May 2015. DOI: https://doi.org/10.1186/s40781-015-0050-8
  11. Y. Panina, A. Germond, S. Masui, T. M. Watanabe, "Validation of common housekeeping genes as reference for qPCR gene expression analysis during iPS reprogramming process" Scientific reports. Vol.8, No.1. June. 2018. DOI: https://doi.org/10.1038/s41598-018-26707-8
  12. C. Guo, S. Liu, J. Wang, M. Z. Sun, F. T. Greenaway, "ACTB in cancer" Clinica chimica acta. Vo1.417, pp.39-44, Feb. 2013. DOI: https://doi.org/10.1016/j.cca.2012.12.012
  13. Y. Wang, Y. Zhao, J. Li, H. Liu, C. W. Ernst, X. Liu, G. Liu, Yu. Xi, M. Lei, "Evaluation of housekeeping genes for normalizing real-time quantitative PCR assays in pig skeletal muscle at multiple developmental stages" Gene. Vol.565, No.2, pp.235-241, July 2015 DOI: https://doi.org/10.1016/j.gene.2015.04.016
  14. B. Kozera, M. Rapacz, "Reference genes in real-time PCR" J. Appl. Genetics. Vol.54, No.4, pp.391-406, Sep. 2013. DOI: https://doi.org/10.1007/s13353-013-0173-x
  15. J. Vandesompele, K. D. Preter, F. Pattyn, B. Poppe, N. V. Roy, A. D. Paepe, F. Speleman, "Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes" Genome Biology. Vol.3, No.7, June 2002. DOI: https://doi.org/10.1186/gb-2002-3-7-research0034
  16. W. De Spiegelaere, J. D. Wieloch, R. Weigel, V. Schumacher, H. Schorle, D. Nettersheim, M. Bergamann, R. Brehm, S. Kliesch, L. Vandekerckhove, C. Fink, "Reference gene validation for RT-qPCR, a note on different available software packages" PLoSOne. Vol.10, No.3, Mar. 2015. DOI: https://doi.org/10.1371/journal.pone.0122515
  17. M. W. Pfaffl, A. Tichopad, C. Prgomet, T. P. Neuvians, "Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestKeeper-excel-based tool using pair-wise correlations" Biotechnology Letters. Vol.26, No.6, pp.509-515, Mar. 2004. DOI: https://doi.org/10.1023/b:bile.0000019559.84305.47
  18. W. Ju, A. O. Smith, T. Sun, P. Zhao, Y. Jiang, L. Liu, T. Zhang, K. Qi, J. Qiao, K. Xu, L. Zeng, "Validation of housekeeping genes as reference for reverse-transcription-qPCR analysis in busulfan-injured microvascular endothelial cells" Biomed. research international. Vol.2018, Oct. 2018. DOI: https://doi.org/10.1155/2018/4953806
  19. G. L. Zhou, L. Xin, W. Song, L. J. Di, G. Liu, X. S. Wu, D. P. Liu, C. C. Liang, "Active chromatin Hub of the mouse ${\alpha}$-globin locus forms in a transcription factory of clustered housekeeping genes" MCB. Vol.26, No.13, pp.5096-5105, April 2006. DOI: https://doi.org/10.1128/MCB.02454-05
  20. Z. Tu, L. Wang, M. Xu, X. Zhou, T. Chen, F. Sun, "Further understanding human disease genes by comparing with housekeeping genes and other genes" BMC. Vol.7, No.31, Feb. 2006. DOI: https://doi.org/10.1186/1471-2164-7-31
  21. K. E. Kouadjo, Y. Nishida, J. F. Cadrin-Girard, M. Yoshioka, J. St-Amand, "Housekeeping and tissue-specific genes in mouse tissues" BMC. Genomics. Vol.8, No.127, May 2007. DOI: https://doi.org/10.1186/1471-2164-8-127
  22. C. W. Chang, W. C. Cheng, C. R. Chen, W. Y. Shu, M. L. Tsai, C. L. Huang, I. C. Hsu, "Identification of human housekeeping genes and tissue-selective genes by microarray meta-analysis" PLoSOne. Vol.6, No.7, July 2011. DOI: https://doi.org/10.1371/journal.pone.0022859
  23. K. J. McLoughlin, E. Pedrini, M. MacMahon, J. Guduric-Fuchs, R. J. Medina, "Selection of a real-time PCR housekeeping gene panel in human endothelial colony forming cells for cellular senescence studies" Front. Med. Vol.6, No.33, Mar. 2019. DOI: https://doi.org/10.3389/fmed.2019.00033
  24. A. Bee, Y. Ke, S. Forootan, K. Lin, C. Beesley, S. E. Forrest, C. S. Foster, "Ribosomal protein L19 is a prognostic marker of human prostate cancer" Clin. Cancer. Res. Vol.12, No.7, pp.2061-2065, April 2006. DOI: https://doi.org/10.1158/1078-0432.CCR-05-2445
  25. M. N. Hong, H. R. Kim, I. K. Kim, "Ribosoaml protein L19 overexpression activates the unfold protein response and sensitizes MCF7 breast cancer cells to endoplasmic reticulum stress-induced cell death" BBRC. Vol.450, No.1, pp.673-678, July. 2014. DOI: https://doi.org/10.1016/j.bbrc.2014.06.036
  26. H, Wang, L. N. Zhao, K. Z. Li, R. Ling, X. J. Li, L. Wang, "Overexpression of ribosomal protein L15 in associated with cell proliferation in gastric cancer" BMC. Cancer. Vol.6, No.91, April 2006. DOI: https://doi.org/10.1186/1471-2407-6-91
  27. X. Zhao, L. Shen, Y. Feng, H. Yu, X. Wu, J. Chang, X. Shen, J. Qiao, J. Wang, "Decreased expression of RPS15A suppress proliferation of lung cancer cells" Tumor Biol. Vol.36, No.9, pp.6733-6740, April 2015. DOI: https://doi.org/10.1007/s13277-015-3371-9
  28. J. Q. He, A. J. Sandford, I. M. Wang, S. Stepaniants, D. A. Knight, A. Kicic, S. M. Stick, P. D. Pare, "Selection of housekeeping genes for real-time PCR in atopic human bronchial epithelial cells" Eur. Respir. J. Vol.32, No.3, pp.755-762, April 2008. DOI: https://doi.org/10.1183/09031936.00129107
  29. C. Zhen, Y. Zhang, J. Ma, L. Wang, W. Jiang, Y. Shi, Q. Wang, "Identification of reference genes for qRT-PCR in human lung squamous-cell carcinoma by RNA-Seq" ABBS. Vol.46, No.4, pp.330-337, April 2014. DOI: https://doi.org/10.1093/abbs/gmt153
  30. D. A. Butterfield, S. S. Hardas, M. L. B. Lange, "Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and alzheimer's disease: many pathways to neurodegeneration" Jad. Vol.20, No.2, pp. 369-393, April 2010. DOI: https://doi.org/10.3233/jad-2010-1375
  31. N. E. Kadmirl, I. Slassi, B. E. Moutawakil, S. Nadifi, A. Tadevosyan, A. Hachem, A. Soukri, "Glyceraldhyde-3-phosphate dehydrogenase (GAPDH) and alzheimer's disease" Pat. Bio. Vol.62, No.6, pp. 333-336, Dec. 2014. DOI: https://doi.org/10.1016/j.patbio.2014.08.002
  32. M. Caracausi, A. Piovesan, F. Antonaros, P. Strippoli, L. Vitale, M. C. Pelleri, "Systematic identification of human housekeeping genes possibly useful as references in gene expression studies" Mol. Med. Rep. Vol.16, No.3, pp.2397-2410, Sep. 2017. DOI: https://doi.org/10.3892/mmr.2017.6944
  33. D. W. Burt, W. Carre, M. Fell, A. S. Law, P. B. Antin, D. R. Maglott, J. A. Weber, C. J. Schmidt, S. C. Burgess, F. M. McCarthy, "The chicken gene nomenclature committee report" BMC. Genomics. Vol.10, No.S5, July 2009. DOI: https://doi.org/10.1186/1471-2164-10-S2-S5
  34. C. S. Nascimento, L. T. Barbosa, C. Brito, R. P. M. Fernandes, R. S. Mann, A. P. G. Pinto, H. C. Oliveira, M. V. Dodson, S. E. F. Guimaraes, M. S. Duarte, "Identification of suitable reference genes for real time quantitative polymerase chain reaction assays on pectoralis major muscle in chicken (Gallus gallus)" PLoSOne. Vol.10, No.5, May 2015. DOI: https://doi.org/10.1371/journal.pone.0127935
  35. J. Lenart, K. Kogut, E. Salinska, "Lateralization of housekeeping genes in the brain of one-day old chicks" Gene expression patterns. Vol.25-26, pp.85-91, Nov. 2017. DOI: https://doi.org/10.1016/j.gep.2017.06.006
  36. S. Bages, J. Estany, M. Tor, R. N. Pena, "Investigating reference genes for quantitative real-time PCR analysis across four chicken tissues" Gene. Vol.561, No.1, pp.82-87, April 2015 DOI: https://doi.org/10.1016/j.gene.2015.02.016
  37. D. Borowska, L. Rothwell, R. A. Bailey, K. Waston, P. Kaiser, "Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs" VII. Vol.170, pp.20-24, Feb. 2016. DOI: https://doi.org/10.1016/j.vetimm.2016.01.001
  38. J. Zhang, Y. Y. Gao, Y. Q. Huang, Q. Fan, X. T. Lu, C. K. Wang, "Selection of housekeeping genes for quantitative gene expression analysis in yellow-feathered broilers" IJAC. Vol.17, No.2, pp.540-546, Aug. 2017. DOI: https://dx.doi.org/10.1080/1828051X.2017.1365633
  39. M. F. Rothschild, "Advances in pig genomics and functional gene discovery" Comp. Funct. Genom. Vol.4, No.2, pp.266-270, April 2003. DOI: https://doi.org/10.1002/cfg.261
  40. M. J. Uddin, M. U. Cinar, D. Tesfaye, C. Looft, E. Tholen, K. Schellander, "Age-related changes in relative expression stability of commonly used housekeeping genes in selected porcine tissues" BMC. Vol.4, No.441, Oct. 2011. DOI: https://doi.org/10.1186/1756-0500-4-441
  41. H. A. Jinnah, J. E. Visser, J. C. Harris, A. Verdu, L. Larovere, I. Ceballos-Picot, P. Gonzale-Alegre, V. Neychev, R. J. Torres, O. Dulac, I. Desguerre, D. J. Schretlen, K. L. Robey, G. Barabas, B. R. Bloem, W. Nyhan, R. D. Kremer, G. E. Eddey, J. G. Puig, S. G. Reich, "Delineation of the motor disorder of Lesch-Nyhan disease" Brain. Vol.129, No.5, pp.1201-1217, May. 2006. DOI: https://doi.org/10.1093/brain/awl056
  42. J. Zhang, Z. Tang, N. Wang, L. Long, K. Li, "Evaluating a set of reference genes for expression normalization in multiple tissues and skeletal muscle at different development stages in pigs using quantitative real-time polymerase chain reaction" DNA and cell biology. Vol.31, No.1, pp.106-113, Jan. 2012. DOI: https://doi.org/10.1089/dna.2011.1249
  43. X. Feng, Y. Xiong, H. Qian, M. Lei, D. Xu, Z. Ren, "Selection of reference genes for gene expression studies in porcine skeletal muscle using SYBR green qPCR" J. Biotec. Vol.150, No.3, pp.288-293, Nov. 2010. DOI: https://doi.org/10.1016/j.jbiotec.2010.09.949
  44. A. B. Nygard, C. B. Jorgensen, S. Cirera, M. Fredholm, "Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR" BMC. Vol.8, No.67, Aug. 2007. DOI: https://doi.org/10.1186/1471-2199-8-67
  45. Z. Yan, J. Gao, X. Lv, W. Yang, S. Wen, H. Tong, C. Tang, "Quantitative evaluation and selection of reference genes for quantitative RT-PCR in mouse acute pancreatitis" BioMed. Vol.2016, Mar. 2016. DOI: https://doi.org/10.1155/2016/8367063
  46. R. Nakao, S. Yamamoto, Y. Yasumoto, K. Kadota, K. Oishi, "Impact of denervation-induced muscle atrophy on housekeeping gene expression in mice" MUS. Vol.51, No.2, pp.276-281, Feb. 2015. DOI: https://doi.org/10.1002/mus.24310
  47. N. Noel, J. Flanagan, S. G. Kalko, M. J. R. Bajo, M. D. M. Manu, J. L. G. Fuster, E. Beutler, J. L. V. Corrons, "Two new phosphoglycerate kinase mutations associated with chronic haemolytic anaemia and neurological dysfunction in two patiensts from spain" Bjh. Vol.132, No.4, pp.523-529, Jan. 2006. DOI: https://doi.org/10.1111/j.1365-2141.2005.05882.x
  48. M. E. Solano, K. Thiele, M. K. Kowal, P. C. Arck, "Identification of suitable reference genes in the mouse placenta" Placenta. Vol.39, pp.7-15, Mar. 2016. DOI: https://doi.org/10.1016/j.placenta.2015.12.017
  49. G. Monaco, S. V. Dam, J. L. C. N. Ribeiro, A. Larbi, J. P. de Magalhaes, "A comparison of human and mouse gene co-expression networks reveals conservation and divergence at the tissue, pathway and disease levels" BMC. Vol.15, No.259, Nov. 2015. DOI: https://doi.org/10.1186/s12862-015-0534-7
  50. A. Breschi, T. R. Gingeras, R. Guigo, "Comparative transcriptomics in human and mouse" NRG. Vol.18, pp.425-440, May. 2017. DOI: https://doi.org/10.1038/nrg.2017.19
  51. B. W. Hounkpe, F. Chenou, F. Lima, E. V. de Paula, "HT Atlas v1.0 database: redefining human and mouse housekeeping genes and candidate reference transcripts by mining massive RNA-seq datasets" BioRxiv. Oct. 2019. DOI: https://doi.org/10.1101/787150
  52. J. Xu, W. Zhu, W. Xu, W. Yao, B. Zhang, Y. Xu, S. Ji, C. Liu, J. Long, Q. Ni, X. Yu, "Up-regulation of MBD1 promotes pancreatic cancer cell epithelial-mesenchymal transition and invasion by epigenetic down-regulation of E-cadherin" CMM. Vol.13, No.3, pp.387-400, Mar. 2013. DOI: https://doi.org/10.2174/156652413805076740
  53. J. Hu, J. Qiu, Y. Zheng, T. Zhang, T. Yin, X. Xie, G. Wang, "AAMP regulates endothelial cell migration and angiogenesis through RhoA/Rho kinase signaling" BMES. Vol.44, No.3, pp.830-832, Mar. 2016. DOI: https://dx.doi.org/10.1007/s10439-015-1537-7
  54. D. E. Spratt, G. S. Shaw, "Association of the disordered C-terminus of CDC34 with a catalytically bound ubiquitin" JMB. Vol.407, No.3, pp.425-438, April 2011. DOI: https://doi.org/10.1016/j.jmb.2011.01.047
  55. Y. J. Machida, Y. Machida, A. A. Vashisht, J. A. Wohlschlegel, A. Dutta, "The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1" JBC. Vol.284, No.49, pp.34179-34188, Dec. 2009. DOI: https://doi.org/10.1074/jbc.m109.046755
  56. K. Wei, T. Zhang, L. Ma, "Divergent and convergent evolution of housekeeping genes in human-pig lineage" PeerJ. Vol.6, May 2018. DOI: https://doi.org/10.7717/peerj.4840
  57. S. J. Xao, C. Zhang, Q. Zou, Z. L. Ji, "TiSGeD: a database for tissue-specific genes" Bioinformatics. Vol.26, No.9, pp.1273-1275, Mar. 2010. DOI: https://doi.org/10.1093/bioinformatics/btq109
  58. E. D. L. Reboucas, J. J. D. N. Costa, M. J. Passos, J. R. D. S. Passos, R. V. D. Hurk, J. R. V. Silva, "Real time PCR and importance of housekeeping genes for normalization and quantification of mRNA expression in different tissues" BABT. Vol.56, No.1, pp.143-154, Feb. 2013. DOI: https://doi.org/10.1590/S1516-89132013000100019
  59. J. Caradec, N. Sirab, C. Keumeugni, S. Moutereau, M. Chimingqi, C. Matar, D. Revaud, M. Bah, P. Manivet, M. Conti, S. Loric, "Desperate housekeeping genes: the dramatic example of hypoxia" BJC. Vol.102, Feb. 2010. DOI: https://doi.org/10.1038/sj.bjc.6605573
  60. S. N. Zhang, W. R. Hou, J. Yang, X. ding, Y. L. Hou, Z. S. Peng, "Cloning and sequence analysis of ribosomal protein L13 gene(RPL13) from ailuropoda melanoleuca" CSIP. Aug. 2012. DOI: https://doi.org/10.1109/csip.2012.6308911
  61. A, Bee. D, Brewer, C. Bessley, A. Dodson, S. Forootan, T. Dickinson, P. Gerard, B. Lane, S. Yao, C. S. Cooper, M. B. A. Djamgoz, C. M. Gosden, Y. Ke, C. S. Foster, "siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer" PLosOne. Vol.6, No. 7, Jul. 2011. DOI: https://doi.org/10.1371/journal.pone.0022672
  62. M. Ogrodnik, H. Salmonowicz, R. Brown, J. Turkowska, W. Sredniawa, S. Pattabiraman, T. Amen, A. C. Abraham, N. Eichler, R. Lyakhovetsky, D. Kaganovich, "Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin" PNAS. Vol.111, No.22, pp.8049-8054, June 2014. DOI: https://doi.org/10.1073/pnas.1324035111
  63. J. Y. J. Wang, "The capable ABL: What is its biological function?" MCB. Vol.34, No.7, pp.1188-1197, April 2014. DOI: https://doi.org/10.1128/MCB.01454-13
  64. G. Fanali, A. D. Masi, V. Trezza, M. Marino, M. Fasano, P. Ascenzi, "Human serum albumin: from bench to bedside" MAM. Vol.33, No.3, pp.209-290, June 2012. DOI: https://doi.org/10.1016/j.mam.2011.12.002