DOI QR코드

DOI QR Code

Evaluation of Thermal Durability for Thermal Barrier Coatings with Gradient Coating Thickness

경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가

  • Lee, Seoung Soo (Aeronautical System Center, Defense Agency for Technology and Quality) ;
  • Kim, Jun Seong (School of Materials Science and Engineering, Changwon National University) ;
  • Jung, Yeon-Gil (School of Materials Science and Engineering, Changwon National University)
  • 이승수 (국방기술품질원 항공센터) ;
  • 김준성 (창원대학교 신소재공학부) ;
  • 정연길 (창원대학교 신소재공학부)
  • Received : 2020.05.13
  • Accepted : 2020.08.07
  • Published : 2020.08.31

Abstract

The effects of the coating thickness on the thermal durability and thermal stability of thermal barrier coatings (TBCs) with a gradient coating thickness were investigated using a flame thermal fatigue (FTF) test and thermal shock (TS) test. The bond and topcoats were deposited on the Ni-based super-alloy (GTD-111) using an air plasma spray (APS) method with Ni-Cr based MCrAlY feedstock powder and yttria-stabilized zirconia (YSZ), respectively. After the FTF test at 1100 ℃ for 1429 cycles, the bond coat was oxidized partially and the thermally grown oxide (TGO) layer was observed at the interface between the topcoat and bond coat. On the other hand, the interface microstructure of each part in the TBC specimen showed a good condition without cracking or delamination. As a result of the TS test at 1100 ℃, the TBC with gradient coating thickness was initially delaminated at a thin part of the coating layer after 37 cycles, and the TBC was delaminated by more than 50% after 98 cycles. The TBCs of the thin part showed more oxidation of the bond coat with the delamination of topcoat than the thick part. The thick part of the TBC thickness showed good thermal stability and oxidation resistance of the bond coat due to the increased thermal barrier effect.

경사화 두께를 갖는 열차폐 코팅의 열적 내구성과 열적 안정성에 대한 코팅층 두께의 영향을 화염 열피로 시험과 열충격 시험을 통해서 조사하였다. Bond 층과 top 층은 각각 Ni-Cr계 상용 MCrAlY 분말과 상용 이트리아 안정화 지르코니아 (YSZ) 분말을 사용하여 니켈기지의 초내열합금 모재 (GTD-111)에 대기 플라즈마 용사법 (APS)으로 코팅층을 형성하였다. 1100 ℃의 화염으로 1429회 열피로 시험 후 bond 층이 일부 산화되고 top 층과 bond 층 계면에서 열화에 의한 산화층 (TGO)이 관찰되었으나, 코팅층 부위와 관계없이 균열이나 박리현상 없는 양호한 미세구조를 나타내었다. 1100 ℃ 열충격 시험결과, 37회 열충격 테스트 후 코팅층의 얇은 부위에서 박리가 시작되어 98회 시험 후 코팅층의 50% 이상이 박리되었으며, 코팅층의 두께가 얇게 형성된 부위는 코팅층이 두껍게 형성된 부위에 비해, top 층의 박리와 함께 bond 층의 산화가 많이 진행되었으며, 코팅층 두께가 상대적으로 두껍게 형성된 부위에서 열차폐 효과의 증가로 인해 bond 층의 내산화성과 열적 안정성이 우수한 것으로 나타났다.

Keywords

References

  1. S. Hada, K. Tsukagoshi, J. Masada and E. Ito, "Test Results of the World's First $1,600^{\circ}C$ J-series Gas Turbine". Mitsubishi Heavy Technology Review , Vol. 49 No. 1, pp. 18-23, March 2012.
  2. M. T. Kim, Y. C. Jung and D. Seo, "In situ deposition behavior of $SiO_2$ on YSZ-TBC-coated IN738LC during a burner rig test". Surf. Coat Technol, Vol. 206, pp. 4539-4545, June 2012. DOI: https://doi.org/10.1016/j.surfcoat.2012.03.061
  3. N. P. Padture, M. Gell and E. H. Jordan, "Thermal Barrier Coatings for Gas-Turbine Engine Applications". Science , Vol. 296, pp. 280-284, April 2002. DOI: https://doi.org/10.1126/science.1068609
  4. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, "Mechanisms controlling the durability of thermal barrier coatings". Prog. Mater. Sci., Vol. 46, pp. 505-553, 2001. DOI: https://doi.org/10.1016/S0079-6425(00)00020-7
  5. M. Gell, E. Jordan, K. Vaidyanathan, K. McCarron, B. Barber, Y. H. Sohn and V. K. Tolpygo, "Bond Strength, Bond Stress and Spallation Mechanisms of Thermal Barrier Coatings". Surf. Coat. Technol., Vol. 120-121, pp. 53-60, Nov. 1999. DOI: https://doi.org/10.1016/S0257-8972(99)00338-2
  6. R. A. Miller, "Current Status of Thermal Barrier Coatings-an Overview". Surf. Coat. Technol., Vol. 30, pp. 1-11, Jan. 1987. DOI: https://doi.org/10.1016/0257-8972(87)90003-X
  7. S. M. Meier and D. K. Gupta, "The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications". J. Eng. Gas Turbines Power, Vol. 116, pp. 250-57, Jan. 1994. DOI: https://doi.org/10.1115/1.2906801
  8. D. R. Clarke and C. G. Levi, "Materials Design for the Next Generation Thermal Barrier Coatings". Annu. Rev. Mater. Res., Vol. 33, pp. 383-417, Aug. 2003. DOI: https://doi.org/10.1146/annurev.matsci.33.011403.113718
  9. R. A. Miller, "Thermal Barrier Coatings for Aircraft Engines: History and Directions". J. Therm. Spray Technol., Vol. 6, pp. 35, 1997. DOI: https://doi.org/10.1007/BF02646310
  10. S. Bose and J. DeMasi-Marcin, "Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt & Whitney". J. Therm. Spray Technol., Vol. 6, pp. 99-104, March 1997. DOI: https://doi.org/10.1007/BF02646318
  11. R. L. Jones, Metallurgical and Ceramic Protective Coatings, p. 342, Chapman and Hall, London, 1996, pp. 342.
  12. Z. Lu, S. W. Myoung, Y. G. Jung, G. Balakrishnan, J. Lee and U. Paik, " Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure", Materials, Vol.6, pp.3387-3403, 2013. DOI: https://doi.org/10.3390/ma6083387
  13. C. Wang, Y. Wang, S. Fan, Y. You, L. Wang, C. Yang, X. Sun and X. Li, "Optimized Functionally Graded $La_2Zr_2O_7/8YSZ$ Thermal Barrier Coatings Fabricated by Suspension Plasma spraying," J. Alloys Compd., Vol.649, No.15, pp.1182-1190, Nov. 2015. DOI: https://doi.org/10.1016/j.jallcom.2015.05.290
  14. D. Song, U. Paik, X. Guo, J. Zhang, T. K. Woo, Z. Lu, S. H. Jung, J. H Lee and Y. G. Jung, "Microstructure Design for Blended Feedstock and its Thermal Durability in Lanthanum Zirconate Based Thermal Barrier Coatings," Surf. Coat. Technol., Vol.308, No.25, pp.40-49, Dec. 2016. DOI: https://doi.org/10.1016/j.surfcoat.2016.07.112
  15. H. M. Park, S. H. Jun, G. Lyu, Y. G. Jung, B. I. Yan and K. Y. Park, "Thermal Durability of Thermal Barrier Coatings in Furnace Cyclic Thermal Fatigue Test: Effects of Purity and Monoclinic Phase in Feedstock Powder", J. Kor. Ceram. Soc., Vol.55, No.6, pp.608-617, Oct. 2018. DOI: https://doi.org/10.4191/kcers.2018.55.6.06
  16. G. M. Ingo and T. Caro, "Chemical aspects of plasma spraying of zirconia-based thermal barrier coatings". Acta Mater., Vol.56, pp.5177-5187, Oct. 2008. DOI: https://doi.org/10.1016/j.actamat.2008.07.006
  17. P. G. Tsantrizes, G. E. Kim and T. A. Brezinski, "TBCs on free-standing multilayer components". Proceedings of AGARD SMP Meeting on Thermal Barrier Coatings, Aalborg, Denmark, pp.71-78, October 1997.
  18. R. Knight, D. Zhangxiong, E. H. Kim and R. H. Smith, "Influence of bond coat surface characteristics on the performance of TBC systems", Proceedings of the 15th International Thermal Spray Conference , ASM Thermal Spray Society, Nice, France, pp.1549-1554, May 1998.
  19. S. O. Chwa and A. Ohmori, "Microstructures of $ZrO_2$-8 wt% $Y_2O_3$ coatings prepared by a plasma laser hybrid spraying technique", Surf. Coat. Technol., Vol.153, pp.304-312, April 2002. DOI: https://doi.org/10.1016/S0257-8972(01)01686-3
  20. V. K. Tolpygo, D. R. Clarke and K. S. Murphy, "Oxidation-induced failure of EB-PVD thermal barrier coatings", Surf. Coat. Technol., Vol.146-147, pp.124-131, Sep. 2001. DOI: https://doi.org/10.1016/S0257-8972(01)01482-7
  21. S. H. Jung, S. H. Jeon, J. H. Lee, Y. G. Jung, I. S. Kim and B. G. Choi, "Effect of composition, structure design, and coating thickness of thermal barrier coatings on thermal barrier performance", J. Kor. Ceram. Soc., Vol. 53, No. 6, pp. 689-699, Oct. 2016. DOI: http://dx.doi.org/10.4191/kcers.2016.53.6.689