DOI QR코드

DOI QR Code

이산화규소 증착된 스테인레스 기판위에 형성된 은 금속 박막의 급속 열처리에 대한 효과

Rapid Thermal Annealing for Ag Layers on SiO2 Coated Metal Foils

  • 김경보 (인하공업전문대학 금속재료과)
  • Kim, Kyoung-Bo (Department of Metallurgical and Materials Engineering, Inha Technical College)
  • 투고 : 2020.07.10
  • 심사 : 2020.08.20
  • 발행 : 2020.08.28

초록

SiO2 증착된 금속 호일 기판에 형성된 은 금속 박막의 급속 열처리에 대한 물리적 및 화학적 특성 영향을 조사하였다. 은 박막을 150도에서 550도까지 온도를 변화시키며, 각 온도에서 20분 동안 급속 열처리를 진행하였다. 550도에서 표면 거칠기와 저항이 급격하게 증가하는 현상을 발견하였다. 따라서 550도의 열처리 온도 샘플에 대해 조성 분석 기법을 사용하였고, 은 필름 표면에 산소 (O) 및 실리콘 (Si) 원자가 존재함을 확인하였다. 박막의 광학적 특성인, 전체 반사율은 온도가 증가함에 따라 감소하였으며, 특히 550도에서 공정을 진행한 박막은 박막 및 기판 표면으로부터의 다중 반사에 의한 광학적 간섭으로 인해 정현파 특성을 나타냄을 확인하였다. 이러한 현상은 급속 열처리 동안 SiO2 층으로부터 Si 원자의 외부 확산에 기인한 것이다. 본 연구 결과는 다양한 플렉서블 광전자소자의 기판으로 사용할 수 있는 가능성을 제공한다.

This study examined the effects of rapid thermal annealing (RTA) on the physical and chemical characteristics of thin silver (Ag) layers on SiO2 coated metal foils. Ag layers were annealed at various temperatures of the range between 150 ℃ and 550 ℃ for 20 min. The surface roughness and resistivity are increased at the annealing temperatures of 550 ℃. We also found that oxygen (O) and silicon (Si) atoms exist at the Ag film surface by using compositional analysis in the annealing temperatures of 550 ℃. The total reflectance is decreased with increasing temperature. These phenomena are due to an out-diffusion of Si atoms from SiO2 layers during the RTA annealing. The results offer the possibility of using it as a substrate for various flexible optoelectronic devices.

키워드

참고문헌

  1. J. Garcia-Serrano, A. G. Galindo & U Pal. (2004). Au-Al2O3 nanocomposites: XPS and FTIR spectroscopic studies. Solar Energy Materials and Solar Cells, 82(1-2), 291-298. DOI : 10.1016/j.solmat.2004.01.026
  2. A. J. Groszek, E. Lalik & J. Haber. (2010). Heats of interaction of hydrogen with gold and platinum powders and its effect on the subsequent adsorptions of oxygen and noble gases. Applied Surface Science, 256(17), 5498-5502. DOI :10.1016/j.apsusc.2009.12.122
  3. K. T. Butler, P. E. Vullum, A. M. Muggerud, E. Cabrera & J. H. Harding. (2011). Structural and electronic properties of silver/silicon interfaces and implications for solar cell performance. Physical Review B, 83, 235307. DOI : 10.1103/PhysRevB.83.235307
  4. C. Yu, K. Yang, W. Zhou, Q. Fan, L. Wei & J. C. Yu. (2013). Preparation, characterization and photocatalytic performance of noble metals (Ag, Pd, Pt, Rh) deposited on sponge-like ZnO microcuboids. Journal of Physics and Chemistry of Solids, 74(12), 1714-1720. DOI : 10.1016/j.jpcs.2013.06.014
  5. P. Melpignano, C. Cioarec, R. Clergereaux, N. Gherardi, C. Villeneuve & L. Datas. (2010). Organic Electronics, 11(6), 1111-1119 . DOI : 10.1016/j.orgel.2010.03.022
  6. T. Ghodselahi, S. Arsalani & T. Neishaboorynejad. (2014). Synthesis and biosensor application of Ag@Au bimetallic nanoparticles based on localized surface plasmon resonance. Applied Surface Science, 301, 230-234. DOI : 10.1016/j.apsusc.2014.02.050
  7. J. Lv. (2013). Effect of wettability on surface morphologies and optical properties of Ag thin films grown on glass and polymer substrates by thermal evaporation. Applied Surface Science, 273, 215-219. DOI : 10.1016/j.apsusc.2013.02.015
  8. A. Inberg, P. Livshits, Z. Zalevsky & Y. Shacham-Diamand. (2012). Electroless deposition of silver thin films on gold nanoparticles catalyst for micro and nanoelectronics applications. Microelectronic Engineering, 98, 570-573. DOI : 10.1016/j.mee.2012.06.020
  9. H. Nakashima, Y. Sasaki, R. Osozawa, Y. Kon, H. Nakazawa & Y. Suzuki. (2013). Surface enhanced infrared absorption spectra on pulsed laserdeposited silver island films. Thin Solid Films, 536, 166-171. DOI : 10.1016/j.tsf.2013.03.032
  10. D. A. van den Ende, R. Hendriks & R. Cauchois. (2014). Large area photonic flash soldering of thin chips on flex foils for flexible electronic systems: In situ temperature measurements and thermal modelling. Electronic Materials Letters, 10, 1175-1183. DOI : 10.1007/s13391-014-4222-3
  11. Z. Suo, E. Y. Ma, H. Gleskova & S. Wagner. (1999). Mechanics of rollable and foldable film-on-foil electronics. Applied Physics Letters, 74(8), 1177-1179. DOI : 10.1063/1.123478
  12. R. Yu, T. Shibayama, X. Meng, S. Takayanagi, Y. Yoshida, S. Yatsu & S. Watanabe. (2014). Effects of nanosecond-pulsed laser irradiation on nanostructure formation on the surface of thin Au films on $SiO_2$ glass substrates, Applied Surface Science, 289, 274-280. DOI : 10.1016/j.apsusc.2013.10.149
  13. I. C. Chen, B. Y. Cheng, W. C. Ke, C. H. Kuo & L. C. Chang. (2013). Improved light reflectance and thermal stability of Ag-based ohmic contacts on p-type GaN with La additive. Superlattices and Microstructures, 57, 51-57. DOI : 10.1016/j.spmi.2013.02.002
  14. F. M. F. de Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky & H. Petersen. (1989). Physical Review B, 40(8), 5715-5723. DOI : 10.1103/PhysRevB.40.5715
  15. T. Shedel-Niedrig, X. Bao, M. Muhler & R. Schlogl. (1997). Surface-embedded oxygen: Electronic structure of Ag(111) and Cu(poly) oxidized at atmospheric pressure. Berichte der Bunsengesellschaft für physikalische Chemie, 101(7), 994-1006. DOI :10.1002/bbpc.19971010703
  16. A. Toneva, Ts. Marinova & V. Krastev. (1999). XPS investigation of aSi : H thin films after light soaking. Journal of Luminescence, 80(1), 455-459. DOI :10.1016/S0022-2313(98)00147-1
  17. K. B. Kim, J. P. Lee, M. J. Kim & Y. S. Min. (2019). Trend of Crystallization Technology and Large Scale Research for Fabricating Thin Film Transistors of AMOLED Displays. Journal of Convergence for Information Technology, 9(5), 117-124. DOI : 10.22156/CS4SMB.2019.9.5.117
  18. K. B. Kim, J. P. Lee, M. J. Kim & Y. S. Min. (2019). Characteristics of Excimer Laser-Annealed Polycrystalline Silicon on Polymer layers. Journal of Convergence for Information Technology, 9(3), 75-81. DOI : 10.22156/CS4SMB.2019.9.3.075