DOI QR코드

DOI QR Code

음원탐지 및 위치 추정 알고리즘을 이용한 방재용 IoT 디바이스 시스템 설계

The Design of IoT Device System for Disaster Prevention using Sound Source Detection and Location Estimation Algorithm

  • 길민식 (강원대학교 방재전문대학원) ;
  • 곽동걸 (강원대학교 방재전문대학원)
  • Ghil, Min-Sik (Graduate School of Disaster Prevention, Kangwon National University) ;
  • Kwak, Dong-Kurl (Graduate School of Disaster Prevention, Kangwon National University)
  • 투고 : 2020.07.15
  • 심사 : 2020.08.20
  • 발행 : 2020.08.28

초록

본 논문은 음원 탐지 및 음원 위치를 추정하는 IoT Device 시스템에 관한 것으로, 보다 구체적으로는 복수의 마이크로폰 센서로부터 수집된 음원 신호의 도달 시간차를 분석하여 음원의 방향을 정확히 검출하고, IoT 센서를 이용하여 음원의 발생방향을 추적할 수 있는 음원 방향 탐지 Device를 이용한 시스템이다. 음파를 이용하여 위치를 추정하는 기술은 예전부터 군사적 목적으로 개발되어 왔지만 현재는 이를 응용하여 방범·방재 분야 등에 많이 쓰이고 있다. 이에 따라 본 시스템의 제작을 통해 옥외에 설치한 후 여러 방향에서 음원 발생시켜 성능 시험을 실시하였다. 그 결과 음향 탐지 영역 140dB, 반응시간 1초 이내, 방향 각도 분해능 1° 이내로 매우 정확하게 동작함을 확인할 수 있었다. 향후에는 본 설계안을 바탕으로 빅데이터 분석을 통한 인공지능 알고리즘을 반영하여 보다 신뢰성을 향상시켜 상용화할 계획에 있다.

This paper relates to an IoT device system that detects sound source and estimates the sound source location. More specifically, it is a system using a sound source direction detection device that can accurately detect the direction of a sound source by analyzing the difference of arrival time of a sound source signal collected from microphone sensors, and track the generation direction of a sound source using an IoT sensor. As a result of a performance test by generating a sound source, it was confirmed that it operates very accurately within 140dB of the acoustic detection area, within 1 second of response time, and within 1° of directional angle resolution. In the future, based on this design plan, we plan to commercialize it by improving the reliability by reflecting the artificial intelligence algorithm through big data analysis.

키워드

참고문헌

  1. J. Rajagukguk & N. E. Sari. (2017). Detection System of Sound Noise Level (SNL) Based on Condenser Microphone Sensor, IOP Conf. Series: Journal of Physics: Conf. Series 970 , 1-7. DOI : 10.1088/1742-6596/970/1/012025
  2. D. Stowell, D. Giannoulis & E. Benetos. (2015). Detection and Classification of Acoustic Scenes and Events, IEEE TRANSACTIONS ON MULTIMEDIA, 17(10), 1733-1746. DOI : 10.1109/TMM.2015.2428998
  3. S. Jeon, K. W. Park, H. W. Ryu & Y. H. Kim. (2010). A Design of M2M BASED Intelligent Operating System for Effective Pollution Control Facilities, 2010 International Conference on Information and Communication Technology Convergence (ICTC), 521-522. DOI : 10.1109/ICTC.2010.5674786
  4. K. Kalgaonkar, P. Smaragdis & B. Raj. (2007). Sensor and Data Systems, Audio-Assisted Cameras and Acoustic Doppler Sensors, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1-2. DOI : 10.1109/CVPR.2007.383533
  5. K. Yamaoka, N. Ono, S. Makino & T. Yamada. (2017). Abnormal sound detection by two microphones using virtual microphone technique, Proceedings of APSIPA Annual Summit and Conference 2017, 478-481. DOI : 10.1109/APSIPA.2017.8282079
  6. C. Liu, B. C. Wheeler, W. D. O'Brien Jr., R. C. Bilger, C. R. Lansing & A. S. Feng. (2000). Localization of Multiple Sound Sources with Two Microphones, Journal of the Acoustical Society of America, 108(4), 1888-1905. DOI : 10.1121/1.1290516
  7. A. Pourmohammad & S.M. Ahadi. (2012). Real Time High Accuracy 3-D PHAT-Based Sound Source Localization Using a Simple 4-Microphone Arrangement, IEEE Systems Journal, 6(3), 455-468. DOI : 10.1109/JSYST.2011.2176766
  8. B. Y. Whang, J. H. Jung & C. M. Lee. (2015). Advanced Sound Source Localization Study Using De-noising Filter based on the Discrete Wavelet Transform, Journal of Institute of Control, Robotics and System, 21(12), 1185-1192. DOI : 10.5302/J.ICROS.2015.15.0012
  9. C. Y. Choi & D. M. Lee. (2013). Fuzzy Logic Based Sound Source Localization System Using Sound Strength in the Underground Parking Lot, The Journal of Korean Institute of Communications and Information Sciences, 38C(05), 434-439. DOI : 10.7840/kics.2013.38C.5.434
  10. S. H. Chun & Y. J. Chun. (2019). Performance Analysis of Sound Event Detection Based on CRNN, The Journal of Korean Institute of Information Technology, 17(5), 83-90. DOI : 10.14801/jkiit.2019.17.5.83
  11. S. Adavanne, A. Politis & T. Virtanen. (2018). Sound Event Localization and Detectionof Overlapping Sources Using Convolutional Recurrent Neural Networks, IEEE Journal of Selected Topics in Signal Processing, 13(1), 34-48. DOI : 10.1109/JSTSP.2018.2885636
  12. G. Raboshchuk, C. Nadeu, P. Jancovic, A. P. Lilja, M. Kokuer, B. M. Mahamud & A. R.. Veciana. (2017). A Knowledge-Based Approach to Automatic Detection of Equipment Alarm Sounds in a Neonatal Intensive Care Unit Environment, IEEE Journal of Translational Engineering in Health and Medicine, 6, 1-10. DOI : 10.1109/JTEHM.2017.2781224
  13. S. W. Suh, W. T. Lim, Y. H. Jeong, T. J. Lee & H. Y. Kim. (2018). Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset, Journal of Broadcast Engineering, 23(6), 855-865. DOI : 10.5909/JBE.2018.23.6.855