DOI QR코드

DOI QR Code

장기간의 상호작용적 비디오 게임이 노인의 인지정보처리에 미치는 영향: P300

The long-term effect of Interactive Video Game on Cognitive Information Processing the elderly: P300

  • 김성운 (영남대학교 특수체육교육학과) ;
  • 김한철 (영남대학교 특수체육교육학과)
  • Kim, Sung-Woon (Dept. of Special Physical Education, Yeungnam University) ;
  • Kim, Han-Cheol (Dept. of Special Physical Education, Yeungnam University)
  • 투고 : 2020.07.15
  • 심사 : 2020.08.20
  • 발행 : 2020.08.28

초록

본 연구의 목적은 장기간의 상호작용적 비디오 게임이 노인의 인지정보처리에 어떤 영향을 미치는지 알아보는데 있다. 본 연구에 참여할 피험자는 K시 D, J, K, W 노인복지관 노인 남·녀(65-70세) 250명 중 신체활동수준을 측정하여 신체활동이 낮은 수준(낮음: 3200kcal 이하/1주)을 보인 60명이며, 피험자들 모두 사전 동의를 거쳐 자발적으로 본 실험에 참여하였다. 선정된 모든 피험자들은 난수표를 이용하여 무선 할당되어 (1) 상호작용적 비디오게임 집단(20명) (2) 유산소운동(20명) (3) 통제집단(20명)으로 배정하였다. 본 연구의 실험설계는 3(집단)×2(사전사후)에 대해 반복 측정 이원분산분석을 실시했다. 종속변수는 인지기능 척도(주의집중력, 지연 기억력, 단기기억 능력, 즉각 기억력, 언어 유창성, 전두엽 운동기능), ERP 분석에서는 P300의 진폭과 잠재기, 반응시간과 정확률이다. 연구결과에서 인지기능과 ERP 분석에서 운동수행의 반응시간과 반응 정확률 및 진폭과 잠재기에서 상호작용적 비디오게임 집단과 유산소 운동집단은 유의미한 통계적 차이가 없었으나, 상호작용적 비디오게임 집단과 유산소 운동(걷기운동)집단이 통제집단보다 향상된 결과를 보였다. 이러한 연구결과는 인지적 운동인 상호작용적 비디오게임과 같은 유산소운동의 꾸준한 참여는 노인의 인지기능 쇠퇴방지에 좋은 영향을 미칠 수 있다고 여겨진다.

The objectives of this study was to examine the effect of Interactive Video Game on cognitive information processing the elderly. Sixty elderly were attended in this study. Their ages ranged from 65 to 70, with a mean age of 67.60 years. The subjects were randomly assigned to one of three experimental conditions: (1) interactive video game group (n=20), (2) aerobic exercise group (n=20), (3) control group (n=20). The experimental design of this study was analyzed using two-way ANOVAs with repeated measures of groups and time. Cognitive function was assessed by neuroelectrical response, and ERP analysis. The results of the study showed that the interactive video game group and aerobic exercise group showed no significant statistical differences in the response time, response accuracy, amplitude and potential of the performance of the exercise in cognitive function and ERP analysis, but improved the interaction video game group and aerobic exercise (walking) group over the control group. It was concluded that long-term aerobic exercise like interactive video game is associated with attenuation of cognitive decline in the elderly.

키워드

참고문헌

  1. S. W. Kim, & H. S. Yoo. (2013). Effect of chronic aerobic exercise on cognitive function of older adults-an examination of P300. Korean Journal of Sports Science, 22(4), 411-428,
  2. W. C. Kim, S. L. Choi, & S. W. Kim. (2012). The effect of tai chi exercise on skill related fitness and mental health in elderly adult. Korean Journal of Sports Science, 21(4), 437-455.
  3. M. K. Shin. (2009). Effects of an exercise program on frontal lobe cognitive function in elders. Journal of Korean Academy of Nursing, 39(1), 107-115. https://doi.org/10.4040/jkan.2009.39.1.107
  4. Y. S. Kim (2001). The effect of cognitive ability and self-esteem on regular exercise in the elderly. The Korean Journal of Physical Education, 40(4), 181-193.
  5. K. I. Erickson, A. F. Kramer. (2015). Physical activity, brain, and cognition. Physical activity, brain, and cognition. Current opinion in behavioral sciences, 4, 27-32. https://doi.org/10.1016/j.cobeha.2015.01.005
  6. B. A. Hogan. (2005). Physical and cognitive activity and exercise for older adults: review. Journal of Aging and Human Development, 60, 95-126. https://doi.org/10.2190/PTG9-XDVM-YETA-MKXA
  7. T. A. Salthouse. (1991). Cognitive facets of aging well. Generations. Journal of the American Society on Aging, 15(1), 35-38.
  8. T. A. Salthouse, & T. J. Maurer. (1996). Aging, job performance, and career development. Handbook of the psychology of aging, 4. 35-38.
  9. S. W. Kim, W. C. Kim, H. C. Kim. (2019). The effects of exercise video game on elderly adult's self-efficacy and self-perceived health status. Korean Journal of Sport Psychology, 30(1), 33-42. https://doi.org/10.14385/KSSP.30.1.33
  10. M. S. Lee, & J. H. Cho. (2018). Summative review of physical activity intervention and health aging. Korean Journal of Sports Science, 27(1), 905-921. https://doi.org/10.35159/kjss.2018.02.27.1.905
  11. A. S. Buchman, L. Yu, R. S. Wilson,, A. Lim, R. J. Dawe, C. Gaiteri, & D. A. Bennett. (2019). Physical activity, common brain pathologies, and cognition in community-dwelling older adults. Neurology, 92(8), e811-e822. https://doi.org/10.1212/wnl.0000000000006954
  12. K. M. Sink, M. A. Espeland, C. M. Castro, T. Church, R. Cohen, J. A. Dodson, & O. L. Lopez. (2015). Effect of a 24-month physical activity intervention vs health education on cognitive outcomes in sedentary older adults: the LIFE randomized trial. Jama, 314(8), 781-790. https://doi.org/10.1001/jama.2015.9617
  13. B. N. Sprague, S. A. Freed, C. E. Webb, C. B. Phillips, J. Hyun, & L. A. Ross. (2019). The impact of behavioral interventions on cognitive function in healthy older adults: A systematic review. Ageing research reviews, 52, 32-52. https://doi.org/10.1016/j.arr.2019.04.002
  14. F. T. Chen, R. J. Hopman, C. J. Huang, C. H. Chu, C. H. Hillman, T. M. Hung, & Y. K. Chang. (2020). The Effect of Exercise Training on Brain Structure and Function in Older Adults: A Systematic Review Based on Evidence from Randomized Control Trials. Journal of Clinical Medicine, 9(4), 914. https://doi.org/10.3390/jcm9040914
  15. J. O. Yu, & J. S. Kim. (2015). Effects of a physical activity program using exergame with elderly women. Journal of Korean Academy of Nursing, 45(1), 84-96. https://doi.org/10.4040/jkan.2015.45.1.84
  16. G. Osorio, D. C. Moffat, & J. Sykes. (2012). Exergaming, exercise, and gaming: Sharing motivations. Games for health: research, development, and clinical applications, 1(3), 205-210.
  17. E. D. de Bruin, D. Schoene, G. Pichierri, & S. T. Smith. (2010). Use of virtual reality technique for the training of motor control in the elderly. Zeitschrift fur Gerontologie und Geriatrie, 43(4), 229-234. https://doi.org/10.1007/s00391-010-0124-7
  18. L. E. Graves, N. D. Ridgers, K. Williams, G. Stratton, G. Atkinson, & N. T. Cable. (2010). The physiological cost and enjoyment of Wii Fit in adolescents, young adults, and older adults. Journal of Physical Activity and Health, 7(3), 393-401. https://doi.org/10.1123/jpah.7.3.393
  19. H., Song, W. Peng, & K. M. Lee. (2011). Promoting exercise self-efficacy with an exergame. Journal of health communication, 16(2), 148-162. https://doi.org/10.1080/10810730.2010.535107
  20. G. H. Lee. (2017). Effects of a virtual reality exercise program(wii) on cognitive function of elderly people with alzheimer dementia. Kinesiology, 19(1), 35-44.
  21. G., Saposnik, R., Teasell, M., Mamdani, J. Hall, W. McIlroy, D. Cheung, & M. Bayley. (2010). Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke, 41(7), 1477-1484. https://doi.org/10.1161/strokeaha.110.584979
  22. E. Bainbridge, S. Bevans, B. Keeley, & K. Oriel. (2011). The effects of the Nintendo Wii Fit on community-dwelling older adults with perceived balance deficits: A pilot stud. Physical & Occupational Therapy in Geriatrics, 29(2), 126-135. https://doi.org/10.3109/02703181.2011.569053
  23. D. Rosenberg, C. A. Depp, I. V. Vahia, J. Reichstadt, B. W. Palmer, J. Kerr, & D. V. Jeste. (2010). Exergames for subsyndromal depression in older adults: a pilot study of a novel intervention. The American Journal of Geriatric Psychiatry, 18(3), 221-226. https://doi.org/10.1097/jgp.0b013e3181c534b5
  24. C. H. Hillman, E. P. Weiss, J. M. Hagberg, & B. D. Hatfield. (2002). The relationship of age and cardiovascular fitness to cognitive and motor processes. Psychophysiology, 39(3), 303-312. https://doi.org/10.1017.S0048577201393058
  25. C. H. Hillman, A. F. Kramer, A. V. Belopolsky, & D. P. Smith. (2006). A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. International Journal of Psychophysiology, 59(1), 30-39. https://doi.org/10.1016/j.ijpsycho.2005.04.009
  26. N. J. Kirk-Sanchez, & E. L. McGough. (2014). Physical exercise and cognitive performance in the elderly: current perspectives. Clinical interventions in aging, 9, 51-62.
  27. S. C. I. Pavarini, A. G. Brigola, B. M. Luchesi, E. N. Souza, E. S. Rossetti, F. J. Fraga, & R. V. Pedroso. (2018). On the use of the P300 as a tool for cognitive processing assessment in healthy aging: A review. Dementia & neuropsychologia, 12(1), 1 -11. https://doi.org/10.1590/1980-57642018dn12-010001
  28. J. R. Themanson, C. H. Hillman, & J. J. Curtin.(2006). Age and physical activity influences on action monitoring during task switching. Neurobiology of Aging, 27(9), 1335-1345. https://doi.org/10.1016/j.neurobiolaging.2005.07.002
  29. Jr, R. Johnson, A. Pfefferbaum, & B. S. Kopell. (1985). P300 and long‐term memory: Latency predicts recognition performance. Psychophysiology, 22(5), 497-507. https://doi.org/10.1111/j.1469-8986.1985.tb01639.x
  30. J. Polich, & M. T. Lardon. (1997). P300 and long-term physical exercise. Electroencephalography and clinical neurophysiology, 103(4), 493-498. https://doi.org/10.1016/S0013-4694(97)96033-8
  31. C. H. Hillman, A. V. Belopolsky, E. M. Snook, A. F. Kramer, & E. McAuley. (2004). Physical activity and executive control: implications for increased cognitive health during older adulthood. Research quarterly for exercise and sport, 75(2), 176-185. https://doi.org/10.1080/02701367.2004.10609149
  32. Y. K. Chang, C. J. Huang, K. F. Chen, & T. M. Hung. (2013). Physical activity and working memory in healthy older adults: an ERP study. Psychophysiology, 50(11), 1174-1182. https://doi.org/10.1111/psyp.12089
  33. M. Fushimi, N. Matsubuchi, & A. (2005). Sekine, Progression of P300 in a patient with bilateral hippocampal lesions. Clinical neurophysiology, 116 (3), 625-631. https://doi.org/10.1016/j.clinph.2004.09.012
  34. D. R. Young, S. H. Jee, & L. J. Appel. (2001). A comparison of the Yale Physical Activity Survey with other physical activity measures. Medicine and science in sports and exercise, 33(6), 955-961. https://doi.org/10.1097/00005768-200106000-00015
  35. M. J. Woo, J. G. Kim, & S. T. Chung. (2001). ERP changes in response to pitching: The effects of task difficulty. Korean Journal of Sport Psychology, 12(2), 25-37.
  36. J. Polich, & M. T. Lardon. (1997). P300 and long-term physical exercise. Electroencephalography and Clinical Neurophysiology, 103(4), 493- 498. https://doi.org/10.1016/S0013-4694(97)96033-8
  37. H. H. Jasper. (1958). The 10-20 electrode system of the international federation. Electroencephalography and Clinical Neurophysiology, 10, 371-375.
  38. S. W. Kim, G. Y. Lee, & H. S. Yoo. (2013). Effect of aging and physical activity on cognitive function: an examination of P300. International Journal of Digital Content Technology and its Applications, 7(12), 261.
  39. W. W. Spirduso, & L. A. Asplund. (1995). Physical activity and cognitive function in the elderly. Quest, 47(3), 395-410. https://doi.org/10.1080/00336297.1995.10484166
  40. M. Carrasco, N. Ortiz-Maques, & S. Martinez-Rodriguez. (2020). Playing with Nintendo Wii Sports: Impact on physical activity, perceived health and cognitive functioning of a group of communitydwelling older adults. Activities. Adaptation & Aging, 44(2), 119-123. https://doi.org/10.1080/01924788.2019.1595261
  41. J. D. Park, G. Y. Lee, & M. J. Woo. (2019). The effect of cognitive-physical activity program on cognitive function in old adults. Journal of Korean Association of Physical Education and Sport for Girls and Women, 33(1), 71-88.
  42. W. C. Kim, S. L. Choi, & S. W. Kim. (2013). The effect of Tai Chi exercise on the cognitive and physical function in older Adults. International Journal of Digital Content Technology and its Applications, 7(12), 239.
  43. Y. W. Kim, & S. H. Oh. (2018). A meta-analytic approach to the effects of exercise intervention on cognitive function in elderly women. Journal of Korean Association of Physical Education and Sport for Girls and Women, 32(1), 131-147. https://doi.org/10.16915/jkapesgw.2018.03.32.1.131
  44. J. W. Choi, H. N. Yoo, H. W. Lee, S. G. Kang, & H. Y. Jung. (2018). Relationship beteen exercising activity, muscle mass, muscular strength and cognitive function in the elderly. Journal of the Korea Convergence Society, 9(5), 219-229. https://doi.org/10.15207/JKCS.2018.9.5.219
  45. J. L. Etnier, E. S. Drollette, & A. B. Slutsky. (2019). Physical activity and cognition: A narrative review of the evidence for older adults. Psychology of Sport and Exercise, 42, 156-166. https://doi.org/10.1016/j.psychsport.2018.12.006
  46. R. S. Falck, J. C. Davis, J. R. Best, R. A. Crockett, & T. Liu-Ambrose. (2019). Impact of exercise training on physical and cognitive function among older adults: a systematic review and meta-analysis. Neurobiology of aging, 79, 119-130. https://doi.org/10.1016/j.neurobiolaging.2019.03.007
  47. L. Sontakova, A. Bartova, K. Dadova, I. Holmerova, & M. Steffl. (2020). Effects of physical exercise on cognitively impaired older adults: a systematic review and meta-analysis of randomized control trials.
  48. P. Maillot, A. Perrot, & A. Hartley. (2012). Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychology and aging, 27(3), 589. https://doi.org/10.1037/a0026268
  49. Wu, S., Jo, E. A., Ji, H., Kim, K. H., Park, J. J., Kim, B. H., & Im Cho, K. (2019). Exergaming Improves Executive Functions in Patients With Metabolic Syndrome: Randomized Controlled Trial. JMIR serious games, 7(3), e13575. https://doi.org/10.2196/13575
  50. S. Y. Kim, & Y. S. Jung. (2013). Effect of calisthenics on P300 component of event-related potentials in middle-aged and elderly adults. Journal of Korean Association of Physical Education and Sport for Girls and Women, 27(3), 139-155.
  51. P. D. Gajewski, & M. Falkenstein. (2015). Long-term habitual physical activity is associated with lower distractibility in a Stroop interference task in aging: Behavioral and ERP evidence. Brain and cognition, 98, 87-101. https://doi.org/10.1016/j.bandc.2015.06.004
  52. C. H. Hillman, E. P. Weiss, J. M. Hagberg, & B. D. Hatfield. (2002). The relationship of age and cardiovascular fitness to cognitive and motor processes. Psychophysiology, 39(3), 303-312. https://doi.org/10.1017.S0048577201393058
  53. R. V. Pedroso, F. J. Fraga, C. Ayán, J. M. Cancela Carral, L. Scarpari, & R. F. Santos‐Galduroz. (2017). Effects of physical activity on the P 300 component in elderly people: a systematic review. Psychogeriatrics, 17(6). 479-487. https://doi.org/10.1111/psyg.12242
  54. E. J. Scherder, J. Van Paasschen, J. B. Deijen, S. Van Der Knokke, J. F. K. Orlebeke, I. Burgers, & J. A. Sergeant. (2005). Physical activity and executive functions in the elderly with mild cognitive impairment. Aging & mental health, 9(3), 272-280. https://doi.org/10.1080/13607860500089930
  55. A. V. Guimarães, A. R. Barbosa, & V. Meneghini. (2018). Active videogame-based physical activity vs. aerobic exercise and cognitive performance in older adults: a randomized controlled trial. Journal of Physical Education and Sport, 18(1), 203-209.