DOI QR코드

DOI QR Code

Heart rate monitoring and predictability of diabetes using ballistocardiogram(pilot study)

심탄도를 이용한 연속적인 심박수 모니터링 및 당뇨 예측 가능성 연구(파일럿연구)

  • 최상기 (선문대학교 통합의학과) ;
  • 이거룡 (선문대학교 통합의학과)
  • Received : 2020.05.08
  • Accepted : 2020.08.20
  • Published : 2020.08.28

Abstract

The thesis presents a system that continuously collects the human body's physiological vital information at rest with sensors and ICT information technology and predicts diabetes using the collected information. it shows the artificial neural network machine learning method and essential basic variable values. The study method analyzed the correlation between heart rate measurements of BCG and ECG sensors in 20 DM- and 15 DM+ subjects. Artificial Neural Network (ANN) machine learning program was used to predictability of diabetes. The input variables are time domain information of HRV, heart rate, heart rate variability, respiration rate, stroke volume, minimum blood pressure, highest blood pressure, age, and sex. ANN machine learning prediction accuracy is 99.53%. Thesis needs continuous research such as diabetic prediction model by BMI information, predicting cardiac dysfunction, and sleep disorder analysis model using ANN machine learning.

연구의 목적은 가정에서 안정 시 인체의 생리적 활력 정보를 센서와 ICT 정보 기술을 통해 연속적으로 수집하는 시스템과 수집된 정보를 이용하여 당뇨병증 유무를 예측하는 인공신경망 기계학습 방법과 필수적인 기본 변수 값을 제시하였다. 연구 방법은 정상인(DM-) 20명과 당뇨병(DM+) 15명을 대상으로 BCG와 ECG 센서의 심박수 측정값의 상관 관계를 분석하였으며 상관 계수는 R2=0.959이다. Artificial Neural Network(ANN) 기계학습 프로그램을 이용하여 당뇨병증 예측 가능성을 확인하였고 입력 변수는 심박변이도의 시계열정보와 심박수, 심박변이도, 호흡율, 박동량 정보, 최저혈압, 최고혈압, 년령, 성별이며 ANN 기계학습 예측 정확도는 99.53%이다. 그리고 향후 ANN 기계학습 방법을 활용하여 BMI 정보를 이용한 당뇨예측 모델, 심장 기능 장애 예측 모델, 수면장애 분석 모델 등의 계속적인 연구가 필요하다.

Keywords

References

  1. Health insurance review & Assessment Service. (2019.04.11). The prevention of hypertension and diabetes complications is best achieved by constant medication and regular management. Evaluation Management Office, Chronic Disease Assessment Department. http://www.hira.or.kr
  2. B. J. Park. (2016.04.05). Diabetes with more fearful complications, rapidly increasing from the 40s. National Health Insurance Service, Ilsan Hospital. http://www.mohw.go.kr/react/al/sal0301vw.jsp?PAR_MENU_ID=04&MENU_ID=0403&page=1&CONT_SEQ=330894
  3. S. J. Park. (2018.10.17). Diabetes surpassed 5 million, an increase of 0.7% in 2 years. MEDICAL Observer. http://www.monews.co.kr/news/articleView.html?idxno=120246
  4. Yoshiyuki Shigetoh et al. (2009). Higher Heart Rate May Predispose to Obesity and Diabetes Mellitus:20-Year Prospective Study in a General Population. American Journal of Hypertension, Volume 22, Issue 2, 151-155. DOI:10.1038/ajh.2008.331
  5. D. I. Kim et al. (2016). The association between resting heart rate and type 2 diabetes and hypertension in Korean adults. Heart, 2016,102(21), 1757-1762. DOI:10.1136/heartjnl-2015-309119
  6. B. O. Kwon. (2019.10.10). promising smart healthcare market trends and entry strategies. KOTRA Release-19-015. https://news.kotra.or.kr/user/reports/kotranews/20/us rReportsView.do?reportsIdx=10985
  7. Huge C. Hemmings & Talmage D. Egan. (2013). Pharmacology and Physiology for Anesthesia: Foundations and Clinical Application.. china : ELSEVIER Saunders.
  8. Walter B. Cannon. (1963). The Wisdom of the Body. United States: The Norton library.
  9. Aubert, A.E., Seps, B. & Beckers, F. (2003). Heart Rate Variability in Athletes. Sports Med 33, 889-919. DOI:10.2165/00007256-200333120-00003
  10. Makkonen, J. (2014). Blood pressure measurement utilizing MEMS pressure sensors. Master's thesis, School of Electrical Engineering, Espoo, Finland.
  11. Koeppen, Bruce M. (2018). Berne and Levy Physiology. 7th edition. Philadelpia, PA : Elsevier.
  12. David E. Mohrman & Lois Jane Heller. (2018). Cardiovascular Physiology. 9th edition, New york: McGraw-Hill Education.
  13. Ryan Splittgerber. (2019). Snell's clinical neuroanatomy. 8th edition, China : Wolters Kluwer Health/Lippincott Williams &Wilkins.
  14. S. K. Park & J. H. Kang. (2012). Comparison of the Electrocardiographic Characteristics of Junior Athletes and Untrained Subjects. Korean J Clin Lab Sci.2012,44(3), 136-141.
  15. Vanderlei, Luiz & Pastre, Carlos & Hoshi, Rosangela & T D, Carvalho & Godoy, Moacir. (2009). Basic notions of heart rate variability and its clinical applicability. Brazilian Journal of Cardiovascular Surgery 24(2), 205-17. DOI: 10.1590/S0102-76382009000200018
  16. K. J. Park & H. J. Jeong. (2014). Assessing Methods of Heart Rate Variability. Annals of Clinical Neurophysiology, vol.16(2), 49-54. DOI:10.14253/kjcn.2014.16.2.4
  17. W. Kim, J.M. Woo & J. H. Chae. (2004). Use of Heart Rate Variability in Psychiatry. J Korean Neuropsychiatr Assoc Vol.44(2). 176-184.
  18. D.S. Han, N.R. Jung, D.W. Kim, Y.E Kim & C.H. Lee. (2007). Analysis of Korean Stress Conditions by Measuring Heart Rate Variability. Stress Research: .15(3).163-169.
  19. Anna M. Bianchi & Martin O. Mendez. (2013). Methods for heart rate variability analysis during sleep. Conf Proc IEEE Eng Med Biol Soc, 6579-6582. DOI: 10.1109/EMBC.2013.6611063
  20. B. M. Choi & G.J. No. (2004). Heart Rate Variability (HRV). Intravenous Anesthesia 200, 8, 45-86.
  21. Paalasmaa, J. (2014). Monitoring sleep with force sensor measurement. Doctoral dissertation. University of Helsinki, Finland
  22. J. W. Kang. (2002). Respiratory Physiology for Inhalation Calming. Korean Journal of Dental Anesthesiology. 2002(2). 7-14. https://doi.org/10.17245/jkdsa.2002.2.1.7
  23. Maria Skytioti, Signe Sovik & Maja Elstad. (2018). Respiratory pump maintains cardiac strokevolume during hypovolemia in young. healthy volunteers. J Appl Physiol 12, 1319-1325. doi:10.1152/japplphysiol.01009.2017.
  24. B. G. Wallin, E. C. Hart, E. A. Wehrwein, N. Charkoudian and M. J. Joyner. (2010). Relationship between breathing and cardiovascular function at rest:sex-related differences. Acta Physiol (Oxf). 2010 October ; 193-200. doi:10.1111/j.1748-1716.2010.02126.x.
  25. Araz Rawshani. (2017). Pocket guide to ECG interpretation. University of Gothengurg.
  26. Pollock P. (1957). Ballistocardiography: a clinical review. Canadian Medical Association journal, 76(9), 778-783.
  27. Gordon J. W. (1877). Certain Molar Movements of the Human Body produced by the Circulation of the Blood. Journal of anatomy and physiology, 11(Pt3), 533-536.
  28. O. T. Inan et al. (2015). Ballistocardiography and Seismocardiography: A Review of Recent Advances. IEEE Journal of Biomedical and Health Informatics, vol. 19(4), 1414-1427. doi: 10.1109/JBHI.2014.2361732.
  29. Eblen-Zajjur A. (2003). A simple ballistocardiographic system for a medical cardiovascular physiology course. Advances in physiology education, 27(1-4), 224-229. DOI : 10.1152/advan.00025.2002
  30. William B. Thompson, Maurice B. Rappaport & Howard B. Sprague. (1953). Ballistocardiography: II. The Normal Ballistocardiogram. Circulation, Vol.7(3), 321-328. DOI:10.1161/01.CIR.7.3.321
  31. Richard S. Gubner, Manuel Rodstein & Harry E. Ungerleider. (1953). Ballistocardiography An Appraisal of Technic. Physiologic Principles, and Clinical Value, Circulation, Vol.7(3), 268-286. DOI:10.1161/01.CIR.7.2.268
  32. Herbert R. Brown, JR., Marvin J. Hoffman & Vincent De Lalla, JR. (1950). Ballistocardiographic Findings in Patients with Symptoms of Angina Pectoris. Circulation, Vol.1(1), 132-140. DOI:10.1161/01.CIR.1.1.132
  33. Hossein A. et al. (2019). Accurate Detection of Dobutamine-induced Haemodynamic Changes by Kino-Cardiography: A Randomised Double-Blind Placebo-Controlled Validation Study. Sci Rep 9, 10479. DOI:10.1038/s41598-019-46823-3
  34. T. Willemen et al. (2014). Characterization of the respiratory and heart beat signal from an air pressure-based ballistocardiographic setup. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, (pp.6298-6301), DOI: 10.1109/EMBC.2014.6945069.
  35. D. C. Mack et al. (2006). A Passive and Portable System for Monitoring Heart Rate and Detecting Sleep Apnea and Arousals: Preliminary Validation. 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, 2006. D2H2., Arlington, VA, 2006, (pp. 51-54). DOI:10.1109/DDHH.2006.1624795.
  36. Matthias Daniel Zink et al. (2015). Heartbeat Cycle Length Detection by a Ballistocardiographic Sensor in Atrial Fibrillation and Sinus Rhythm. BioMed Research International. Vol. 2015(840356), DOI: 10.1155/2015/840356
  37. Murtuza Ahmed, Nirav P. Patel & Ilene Rosen. (2007). Portable monitors in the diagnosis of obstructive sleep apnea. Chest, vol. 132, no. 5, 1672-1677. DOI:10.1378/chest.06-2793
  38. D. C. Mack et al. (2009). Sleep assessment using a passive ballistocardiography-based system: Preliminary validation. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, 2009, (pp. 4319-4322), DOI: 10.1109/IEMBS.2009.5333805.
  39. T. Kirjavainen, O. Polo, S. McNamara, K. Vaahtoranta & C.E. Sullivan. (1996). Respiratory challenge induces high frequency spiking on the static charge sensitive bed (SCSB). European Respiratory Journal, 1996, 9, 1810-1815. DOI:10.1183/09031936.96.09091810.
  40. M. M. Lee. (2010). Diabetes medication treatment. J. Kor. Soc. Health-Syst. Pharm., Vol.27, No.1, 72-85.
  41. B. C. Choi. (2000). ISSUE & TREND:Type II Diabetes Mellitus. Korea Pharmaceutical Information Center. http://www.health.kr/
  42. J. Kim. (2019). Death cause statistics for 2018. National Statistical Office. Social Statistics Bureau, Population Trends Department. http://kostat.go.kr
  43. K. S. Park. (2018). Diabetes Fact Sheet in Korea 2018. Korean Diabetes Association. Seoul. http://www.diabetes.or.kr
  44. H. A. Park, J. A. Lee, J. Y. Kim, D. I. Kim & Justin Y. Jeon. (2015). The Relationship between Resting Heart Rate and Prevalence of Metabolic Syndrome and Type 2 Diabetes Mellitus in Korean Adults: The Fifth Korea National Health and Nutrition Examination Survey(2012). Korean J Obes 2015, 24(3), 166-174. DOI:10.7570/kjo.2015.24.3.166
  45. H. I. Yang, H. C. Kim & Justin Y. Jeon. (2016). The association of resting heart rate with diabetes, hypertension, and metabolic syndrome in the Korean adult population: The fifth Korea National Health and Nutrition Examination Survey. Clinica Chimica Acta.Vol.455, 195-200. DOI:10.1016/j.cca.2016.01.006
  46. Zhang, X., Shu, X. O., Xiang, Y. B., Yang, G., Li, H., Cai, H., Gao, Y. T., & Zheng, W. (2010). Resting heart rate and risk of type 2 diabetes in women. International journal of epidemiology, 39(3), 900-906. DOI:10.1093/ije/dyq068
  47. H. J. Jeon, S. S. Kim, J.D. Seong & D. M. Baek. (2001). Determinants of Heart Rate Variation in the General Population. Korean Circulation J 2001,31(1), 107-113 https://doi.org/10.4070/kcj.2001.31.1.107
  48. Ribeiro IJS, Pereira R, Valenca Neto PF, Freire IV, Casotti CA & Reis MGD. (2017). Relationship between diabetes mellitus and heart rate variability in community-dwelling elders. Medicina (Kaunas). 2017,53(6), 375-379. DOI:10.1016/j.medici.2017.12.001
  49. Emily B. Schroeder et al. (2005). Diabetes, Glucose, Insulin, and Heart Rate Variability. Diabetes Care 2005 Mar; 28(3): 668-674. . DOI:10.2337/diacare.28.3.668
  50. Srivastava et al. (2019). Prediction of Diabetes Using Artificial Neural Network Approach: ICoEVCI 2018, India. DOI:10.1007/978-981-13-1642-5_59.
  51. El Jerjawi, Nesreen & Abu-Naser, Samy. (2018). Diabetes Prediction Using Artificial Neural Network. Journal of Advanced Science, 124, 1-10.
  52. Nitesh Pradhan, Geeta Rani, Vijaypal Singh Dhaka & Ramesh Chandra Poonia. (2020). Diabetes prediction using artificial neural network. DOI:10.1016/B978-0-12-819061-6.00014-8.
  53. Mahdavi, Hadis & Ramos-Castro, Juan & Giovinazzo, Giuseppe & García-González, Miguel & Rosell, Xavier. (2012). A Wireless Under-Mattress Sensor System for Sleep Monitoring in People with Major Depression. Proceedings of the 9th IASTED International Conference on Biomedical Engineering. BioMed 2012. DOI:10.2316/P.2012.764-119.
  54. Jojo Moolayil. (2019). Learn Keras for Deep Neural Networks. Vancouver:Apress. DOI:10.1007/978-1-4842-4240-7
  55. Chris Albon. (2018). Machine Learning with Python Cookbook. First Edition. United States of America : O'Reilly Media.
  56. Murata Electronics. (2020). Acceleration Sensor Modules SCA11H-A01-036 Data Sheet. https://www.murata.com/products/sensor/accel/sca10h_11h/sca11h
  57. Murata Electronics. (2015.11.12). Ballistocardiographic sensors provide contact-less approach to measuring patient vital signs. https://www.murata.com/en-eu/products/info/sensor/accel/2015/1112
  58. Ewing DJ, Neilson JM, Shapiro CM, Stewart JA & Reid W. (1991). Twenty four hour heart rate variability: effects of posture, sleep, and time of day in healthy controls and comparison with bedside tests of autonomic function in diabetic patients. Br Heart J 1991, 65, 239-244. https://doi.org/10.1136/hrt.65.5.239
  59. K. J. Park, H. J. Jeong. (2014). Assessing Methods of Heart Rate Variability. Annals of Clinical Neurophysiology, vol.16(2), 49-54. DOI:10.14253/kjcn.2014.16.2.4
  60. C. W. Ahn. (2014). Clinical study for diagnostic efficacy of diabetic angiopathy using hemorheological measurement system (RheoScan). MOHW. Health Technology R&D Project. Yonsei University Industry-Academic Innovation Team