References
- Health insurance review & Assessment Service. (2019.04.11). The prevention of hypertension and diabetes complications is best achieved by constant medication and regular management. Evaluation Management Office, Chronic Disease Assessment Department. http://www.hira.or.kr
- B. J. Park. (2016.04.05). Diabetes with more fearful complications, rapidly increasing from the 40s. National Health Insurance Service, Ilsan Hospital. http://www.mohw.go.kr/react/al/sal0301vw.jsp?PAR_MENU_ID=04&MENU_ID=0403&page=1&CONT_SEQ=330894
- S. J. Park. (2018.10.17). Diabetes surpassed 5 million, an increase of 0.7% in 2 years. MEDICAL Observer. http://www.monews.co.kr/news/articleView.html?idxno=120246
- Yoshiyuki Shigetoh et al. (2009). Higher Heart Rate May Predispose to Obesity and Diabetes Mellitus:20-Year Prospective Study in a General Population. American Journal of Hypertension, Volume 22, Issue 2, 151-155. DOI:10.1038/ajh.2008.331
- D. I. Kim et al. (2016). The association between resting heart rate and type 2 diabetes and hypertension in Korean adults. Heart, 2016,102(21), 1757-1762. DOI:10.1136/heartjnl-2015-309119
- B. O. Kwon. (2019.10.10). promising smart healthcare market trends and entry strategies. KOTRA Release-19-015. https://news.kotra.or.kr/user/reports/kotranews/20/us rReportsView.do?reportsIdx=10985
- Huge C. Hemmings & Talmage D. Egan. (2013). Pharmacology and Physiology for Anesthesia: Foundations and Clinical Application.. china : ELSEVIER Saunders.
- Walter B. Cannon. (1963). The Wisdom of the Body. United States: The Norton library.
- Aubert, A.E., Seps, B. & Beckers, F. (2003). Heart Rate Variability in Athletes. Sports Med 33, 889-919. DOI:10.2165/00007256-200333120-00003
- Makkonen, J. (2014). Blood pressure measurement utilizing MEMS pressure sensors. Master's thesis, School of Electrical Engineering, Espoo, Finland.
- Koeppen, Bruce M. (2018). Berne and Levy Physiology. 7th edition. Philadelpia, PA : Elsevier.
- David E. Mohrman & Lois Jane Heller. (2018). Cardiovascular Physiology. 9th edition, New york: McGraw-Hill Education.
- Ryan Splittgerber. (2019). Snell's clinical neuroanatomy. 8th edition, China : Wolters Kluwer Health/Lippincott Williams &Wilkins.
- S. K. Park & J. H. Kang. (2012). Comparison of the Electrocardiographic Characteristics of Junior Athletes and Untrained Subjects. Korean J Clin Lab Sci.2012,44(3), 136-141.
- Vanderlei, Luiz & Pastre, Carlos & Hoshi, Rosangela & T D, Carvalho & Godoy, Moacir. (2009). Basic notions of heart rate variability and its clinical applicability. Brazilian Journal of Cardiovascular Surgery 24(2), 205-17. DOI: 10.1590/S0102-76382009000200018
- K. J. Park & H. J. Jeong. (2014). Assessing Methods of Heart Rate Variability. Annals of Clinical Neurophysiology, vol.16(2), 49-54. DOI:10.14253/kjcn.2014.16.2.4
- W. Kim, J.M. Woo & J. H. Chae. (2004). Use of Heart Rate Variability in Psychiatry. J Korean Neuropsychiatr Assoc Vol.44(2). 176-184.
- D.S. Han, N.R. Jung, D.W. Kim, Y.E Kim & C.H. Lee. (2007). Analysis of Korean Stress Conditions by Measuring Heart Rate Variability. Stress Research: .15(3).163-169.
- Anna M. Bianchi & Martin O. Mendez. (2013). Methods for heart rate variability analysis during sleep. Conf Proc IEEE Eng Med Biol Soc, 6579-6582. DOI: 10.1109/EMBC.2013.6611063
- B. M. Choi & G.J. No. (2004). Heart Rate Variability (HRV). Intravenous Anesthesia 200, 8, 45-86.
- Paalasmaa, J. (2014). Monitoring sleep with force sensor measurement. Doctoral dissertation. University of Helsinki, Finland
- J. W. Kang. (2002). Respiratory Physiology for Inhalation Calming. Korean Journal of Dental Anesthesiology. 2002(2). 7-14. https://doi.org/10.17245/jkdsa.2002.2.1.7
- Maria Skytioti, Signe Sovik & Maja Elstad. (2018). Respiratory pump maintains cardiac strokevolume during hypovolemia in young. healthy volunteers. J Appl Physiol 12, 1319-1325. doi:10.1152/japplphysiol.01009.2017.
- B. G. Wallin, E. C. Hart, E. A. Wehrwein, N. Charkoudian and M. J. Joyner. (2010). Relationship between breathing and cardiovascular function at rest:sex-related differences. Acta Physiol (Oxf). 2010 October ; 193-200. doi:10.1111/j.1748-1716.2010.02126.x.
- Araz Rawshani. (2017). Pocket guide to ECG interpretation. University of Gothengurg.
- Pollock P. (1957). Ballistocardiography: a clinical review. Canadian Medical Association journal, 76(9), 778-783.
- Gordon J. W. (1877). Certain Molar Movements of the Human Body produced by the Circulation of the Blood. Journal of anatomy and physiology, 11(Pt3), 533-536.
- O. T. Inan et al. (2015). Ballistocardiography and Seismocardiography: A Review of Recent Advances. IEEE Journal of Biomedical and Health Informatics, vol. 19(4), 1414-1427. doi: 10.1109/JBHI.2014.2361732.
- Eblen-Zajjur A. (2003). A simple ballistocardiographic system for a medical cardiovascular physiology course. Advances in physiology education, 27(1-4), 224-229. DOI : 10.1152/advan.00025.2002
- William B. Thompson, Maurice B. Rappaport & Howard B. Sprague. (1953). Ballistocardiography: II. The Normal Ballistocardiogram. Circulation, Vol.7(3), 321-328. DOI:10.1161/01.CIR.7.3.321
- Richard S. Gubner, Manuel Rodstein & Harry E. Ungerleider. (1953). Ballistocardiography An Appraisal of Technic. Physiologic Principles, and Clinical Value, Circulation, Vol.7(3), 268-286. DOI:10.1161/01.CIR.7.2.268
- Herbert R. Brown, JR., Marvin J. Hoffman & Vincent De Lalla, JR. (1950). Ballistocardiographic Findings in Patients with Symptoms of Angina Pectoris. Circulation, Vol.1(1), 132-140. DOI:10.1161/01.CIR.1.1.132
- Hossein A. et al. (2019). Accurate Detection of Dobutamine-induced Haemodynamic Changes by Kino-Cardiography: A Randomised Double-Blind Placebo-Controlled Validation Study. Sci Rep 9, 10479. DOI:10.1038/s41598-019-46823-3
- T. Willemen et al. (2014). Characterization of the respiratory and heart beat signal from an air pressure-based ballistocardiographic setup. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, (pp.6298-6301), DOI: 10.1109/EMBC.2014.6945069.
- D. C. Mack et al. (2006). A Passive and Portable System for Monitoring Heart Rate and Detecting Sleep Apnea and Arousals: Preliminary Validation. 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare, 2006. D2H2., Arlington, VA, 2006, (pp. 51-54). DOI:10.1109/DDHH.2006.1624795.
- Matthias Daniel Zink et al. (2015). Heartbeat Cycle Length Detection by a Ballistocardiographic Sensor in Atrial Fibrillation and Sinus Rhythm. BioMed Research International. Vol. 2015(840356), DOI: 10.1155/2015/840356
- Murtuza Ahmed, Nirav P. Patel & Ilene Rosen. (2007). Portable monitors in the diagnosis of obstructive sleep apnea. Chest, vol. 132, no. 5, 1672-1677. DOI:10.1378/chest.06-2793
- D. C. Mack et al. (2009). Sleep assessment using a passive ballistocardiography-based system: Preliminary validation. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, 2009, (pp. 4319-4322), DOI: 10.1109/IEMBS.2009.5333805.
- T. Kirjavainen, O. Polo, S. McNamara, K. Vaahtoranta & C.E. Sullivan. (1996). Respiratory challenge induces high frequency spiking on the static charge sensitive bed (SCSB). European Respiratory Journal, 1996, 9, 1810-1815. DOI:10.1183/09031936.96.09091810.
- M. M. Lee. (2010). Diabetes medication treatment. J. Kor. Soc. Health-Syst. Pharm., Vol.27, No.1, 72-85.
- B. C. Choi. (2000). ISSUE & TREND:Type II Diabetes Mellitus. Korea Pharmaceutical Information Center. http://www.health.kr/
- J. Kim. (2019). Death cause statistics for 2018. National Statistical Office. Social Statistics Bureau, Population Trends Department. http://kostat.go.kr
- K. S. Park. (2018). Diabetes Fact Sheet in Korea 2018. Korean Diabetes Association. Seoul. http://www.diabetes.or.kr
- H. A. Park, J. A. Lee, J. Y. Kim, D. I. Kim & Justin Y. Jeon. (2015). The Relationship between Resting Heart Rate and Prevalence of Metabolic Syndrome and Type 2 Diabetes Mellitus in Korean Adults: The Fifth Korea National Health and Nutrition Examination Survey(2012). Korean J Obes 2015, 24(3), 166-174. DOI:10.7570/kjo.2015.24.3.166
- H. I. Yang, H. C. Kim & Justin Y. Jeon. (2016). The association of resting heart rate with diabetes, hypertension, and metabolic syndrome in the Korean adult population: The fifth Korea National Health and Nutrition Examination Survey. Clinica Chimica Acta.Vol.455, 195-200. DOI:10.1016/j.cca.2016.01.006
- Zhang, X., Shu, X. O., Xiang, Y. B., Yang, G., Li, H., Cai, H., Gao, Y. T., & Zheng, W. (2010). Resting heart rate and risk of type 2 diabetes in women. International journal of epidemiology, 39(3), 900-906. DOI:10.1093/ije/dyq068
- H. J. Jeon, S. S. Kim, J.D. Seong & D. M. Baek. (2001). Determinants of Heart Rate Variation in the General Population. Korean Circulation J 2001,31(1), 107-113 https://doi.org/10.4070/kcj.2001.31.1.107
- Ribeiro IJS, Pereira R, Valenca Neto PF, Freire IV, Casotti CA & Reis MGD. (2017). Relationship between diabetes mellitus and heart rate variability in community-dwelling elders. Medicina (Kaunas). 2017,53(6), 375-379. DOI:10.1016/j.medici.2017.12.001
- Emily B. Schroeder et al. (2005). Diabetes, Glucose, Insulin, and Heart Rate Variability. Diabetes Care 2005 Mar; 28(3): 668-674. . DOI:10.2337/diacare.28.3.668
- Srivastava et al. (2019). Prediction of Diabetes Using Artificial Neural Network Approach: ICoEVCI 2018, India. DOI:10.1007/978-981-13-1642-5_59.
- El Jerjawi, Nesreen & Abu-Naser, Samy. (2018). Diabetes Prediction Using Artificial Neural Network. Journal of Advanced Science, 124, 1-10.
- Nitesh Pradhan, Geeta Rani, Vijaypal Singh Dhaka & Ramesh Chandra Poonia. (2020). Diabetes prediction using artificial neural network. DOI:10.1016/B978-0-12-819061-6.00014-8.
- Mahdavi, Hadis & Ramos-Castro, Juan & Giovinazzo, Giuseppe & García-González, Miguel & Rosell, Xavier. (2012). A Wireless Under-Mattress Sensor System for Sleep Monitoring in People with Major Depression. Proceedings of the 9th IASTED International Conference on Biomedical Engineering. BioMed 2012. DOI:10.2316/P.2012.764-119.
- Jojo Moolayil. (2019). Learn Keras for Deep Neural Networks. Vancouver:Apress. DOI:10.1007/978-1-4842-4240-7
- Chris Albon. (2018). Machine Learning with Python Cookbook. First Edition. United States of America : O'Reilly Media.
- Murata Electronics. (2020). Acceleration Sensor Modules SCA11H-A01-036 Data Sheet. https://www.murata.com/products/sensor/accel/sca10h_11h/sca11h
- Murata Electronics. (2015.11.12). Ballistocardiographic sensors provide contact-less approach to measuring patient vital signs. https://www.murata.com/en-eu/products/info/sensor/accel/2015/1112
- Ewing DJ, Neilson JM, Shapiro CM, Stewart JA & Reid W. (1991). Twenty four hour heart rate variability: effects of posture, sleep, and time of day in healthy controls and comparison with bedside tests of autonomic function in diabetic patients. Br Heart J 1991, 65, 239-244. https://doi.org/10.1136/hrt.65.5.239
- K. J. Park, H. J. Jeong. (2014). Assessing Methods of Heart Rate Variability. Annals of Clinical Neurophysiology, vol.16(2), 49-54. DOI:10.14253/kjcn.2014.16.2.4
- C. W. Ahn. (2014). Clinical study for diagnostic efficacy of diabetic angiopathy using hemorheological measurement system (RheoScan). MOHW. Health Technology R&D Project. Yonsei University Industry-Academic Innovation Team