DOI QR코드

DOI QR Code

디지털 헬스기기의 통합적 고령자 기술수용도 모델

Comprehensive Senior Technology Acceptance Model for Digital Health Devices

  • 투고 : 2020.06.15
  • 심사 : 2020.08.20
  • 발행 : 2020.08.28

초록

본 연구는 디지털 헬스기기의 통합적 고령자 기술수용도 모델을 검증하기 위해 『2019년 한국 중·고령자 기술수용도 조사』 자료를 활용하여 분석을 실시하였다. 본 연구는 기존 기술수용요인인 유용성, 편의성, 확장된 기술요인인 효능감, 불안, 촉진 뿐 아니라 연령에 대한 태도와 삶의 만족도와 디지털 헬스기기 이용의도 간 유의미한 영향관계를 구조 방정식을 통해 살펴보았다. 구체적인 연구모형 검증결과는 다음과 같다. 첫째, 디지털 헬스기기에 대한 유용성, 편의성이 높을수록 디지털 헬스기기를 이용할 의도가 높은 것으로 나타났다. 둘째, 자기효능감이 높을수록 디지털헬스기기를 이용하고자 하는 의도는 오히려 낮아지는 것으로 나타났다. 셋째, 디지털 헬스기기에 대한 편의성, 자기효능감과 불안이 높을수록 유용성 또한 증진되는 것으로 나타났다. 마지막으로 자기효능감, 촉진, 연령에 대한 태도 및 삶의 만족은 편의성과 정적으로 관계를 가지는 것으로 나타났다. 본 연구는 기존의 제한적으로 연구되었던 고령자 기술모형을 확대하여 통합적 고령자 기술수용도 모델을 검증하였다는 것에 연구의 의의를 가진다.

We conducted the analysis using the data of the '2019 Korean Middle and Elderly Technology Acceptance Survey' to verify the comprehensive senior technology acceptance model. In this study, we examined the significant effect the relationship between behavioral intention to use the diital health devices and perceived usefulness, perceived ease of use, gerontechnology self-efficacy, gerontechnology anxiety, facilitating conditions, attitude to life and satisfaction through the structural equation. The results of the research model are as follows. First, the usefulness and ease of use had significant effects on intention to use. Second, the self-efficacy had significant effects on the intention to use. But they had negative effect. Third, perceived usefulness, self-efficacy and anxiety had significant effects on ease of use. Lastly, self-efficacy, facilitating conditions, attitude to life and satisfaction had significant effects on perceived usefulness. These findings highlight that verified the comprehensive senior technology acceptance model in Korea.

키워드

참고문헌

  1. K. H. Jeong. et al. (2017). A Survey of The Elderly, 2017. Sejong : Korea Institute for Health and Social Affairs, Ministry of Health and Welfare
  2. National Health Insurance Service. (2019). 2018 Health Insurance Key Statistics. Wonju : National Health Insurance Service
  3. I. K. Oh. (2019. 3. 29). Digital Health, Is There a Solution to The Aging?. The Medical News. http://www.bosa.co.kr/news/articleView.html?idxno=2102197
  4. Zebra Technologies. (2017). 2022 Hospital Vision Study Report. Illinois, USA : Zebra Technologies
  5. Accenture. (2019). Australian Seniors Ride Digital Care Wave. Ireland, Dublin : Accenture
  6. T. K. Kim & M. Choi. (2019). Older Adults' Willingness to Share Their Personal and Health Information When Adopting Healthcare Technology and Services. International Journal of Medical Informatics, 126, 86-94. DOI : 10.1016/j.ijmedinf.2019.03.010
  7. Y. S. Ki, S. M. Ahn, M. G. Cho & B. G. Choi. (2019). An Analysis on Affecting Factors of Healthcare Applications Continuous Usage Intention and their Relationships. The Jounal of Society for e-Business Studies, 24(1), 49-89. DOI : 10.7838/jsebs.2019.24.1.049
  8. J. S. Jeong, J. M. Park & K. Y. Noh. (2019). Factors Influencing Intention to Continuous Use of Mobile Healthcare Apps: The Breakdown of Perceived Ease of Use. Journal of Cybercommunication Academic Society. 36(2), 81-117. https://doi.org/10.36494/JCAS.2019.06.36.2.81
  9. S. Jin & H. C. Ahn. (2019). A Study on Wearable Healthcare Device Adoption: An Integrated Approach of UTAUT2 and MIR. The Journal of Information Systems, 28(3), 159-202. DOI : 10.5859/KAIS.2019.28.3.159
  10. G. Shanko, S. Negash & T. Bandyopadhyay. (2016). Mobile Healthcare Services Adoption. International Journal of Networking and Virtual Organisations, 16(2), 143-156. DOI : 10.1504/IJNVO.2016.076485
  11. S. M. Kim & C. W. Lee. (2013). Usage Intention of u-Healthcare Service Using Unified Theory of Technology Adoption and Usage. The Journal of the Korea Contents Association, 13(12), 379-388. DOI : 10.5392/JKCA.2013.13.12.379
  12. S. Pan & M. Jordan-Marsh. (2010). Internet Use Intention and Adoption among Chinese Older Adults: From the Expanded Technology Acceptance Model Perspective. Computers in Human Behavior, 26(5), 1111-1119. DOI : 10.1016/j.chb.2010.03.015
  13. S. K. Kim, H. R. Shin & Y. S. Kim. (2019). Accessibility to Digital Information of Middle-Aged and Elderly People, and its Impact on Life Satisfaction Level: Sequential Mediation Effects on Online Social Engagement and Online Network Activity. Journal of Digital Convergence. 17(12), 23-34. DOI : 10.14400/JDC.2019.17.12.023
  14. B. S. Kim & J. M. Kim. (2009). A Study on Digital Divide Trigger Factor of Older People - Focused on Technology Acceptance Model -. Social Science Studies, 35(2), 193-222.
  15. J. E. Cho. (2014). Mobile Phone Adoption by Elderly Users. Journal of Communication Science, 48(5), 211-242.
  16. L. U. S. Nayak, L. Priest & A. P. White. (2010). An Application of the Technology Acceptance Model to the Level of Internet Usage by Older Adults. Universal Access in the Information Society, 9(4), 367-374. DOI : 10.1007/s10209-009-0178-8
  17. A. J. de Veer, J. M. Peeters, A. E. Brabers, F. G. Schellevis, J. J. J. Rademakers & A. L. Francke. (2015). Determinants of the Intention to Use e-Health by Community Dwelling Older People. BMC Health Services Research, 15(1), 103. DOI 10.1186/s12913-015-0765-8
  18. Z. Deng, X. Mo & S. Liu. (2014). Comparison of the Middle-Aged and Older Users' Adoption of Mobile Health Services in China. International journal of medical informatics, 83(3), 210-224. DOI : 10.1016/j.ijmedinf.2013.12.002
  19. Y. W. Kim, S. M. Han & K. S. Kim. (2018). Determinants of Intention to Use Digital Healthcare Service of Middle and Older Users. Information Society & Media, 19(3), 1-23.
  20. S. T. An, H. N. Kang & S. D. Chung. (2018). Older Adults' Adoption of Health-Related Mobile Application : The Role of Empowerment. Journal of Public Relations, 22(6), 53-74. DOI : 10.15814/jpr.2018.22.6.53
  21. S. Nikou, W. Agahari, W. Keijzer-Broers & M. D. Reuver. (2019). Digital Healthcare Technology Adoption by Elderly People: A Capability Approach Model. Telematics and Informatics, 101315. DOI : 10.1016/j.tele.2019.101315
  22. E. M. Jeon & H. J. Seo. (2016). Acceptability of Service Targets for ICT-based Healthcare. Healthcare informatics research, 22(4), 333-341. DOI : 10.4258/hir.2016.22.4.333
  23. J. H. Park et al. (2019). An Analysis of Cognitive Ability and Technology Acceptance Behavior for the Elderly: Towards the Use of Wearable Healthcare Devices. Journal of Information Technology Applications and Management, 26(1), 21-38. DOI : 10.21219/jitam.2019.26.1.021
  24. K. Chen & A. H. S Chan. (2014). Gerontechnology Acceptance by Elderly Hong Kong Chinese: A Senior Technology Acceptance Model (STAM). Ergonomics, 57(5), 635-652. DOI : 10.1080/00140139.2014.895855
  25. J. S. Lee. (2014). Digital Healthcare Platforms and Major Business Trends. [KHIDI Brief]. Sejong : Korea Institute for Health and Social Affairs
  26. S. G. LEE. (2017). Global Digital Healthcare Technology Trends and Challenges. [Weeklytrend]. Daejeon : Institute for Information & communication Technology Planning & evaluation
  27. M. j. Seo. (2017. 2. 2). Digital Healthcare, 14 Trillion Market in 2020. Sedaily. https://www.sedaily.com/NewsVIew/1OBXT61TKV
  28. F. D. Davis. (1985). A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results. Doctoral dissertation. Massachusetts Institute of Technology, Cambridge
  29. F. D. Davis. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. DOI : 10.2307/249008
  30. F. D. Davis, R. P. Bagozzi & P. R. Warshaw. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1003. DOI : 10.1177/001872679204500702
  31. M. Fishbein & I. Ajzen. (1977). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Journal of Business venturing, 5, 177-I89 https://doi.org/10.1016/0883-9026(90)90031-N
  32. S. I. Han. (2005). Determinants of the User's Intention to Use of Mobile Banking. The Journal of Society for e-Business Studies, 10(3), 135-157.
  33. V. Venkatesh, M. G. Morris, G. B. Davis & F. D. Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. DOI : 10.2307/30036540
  34. Z. Zheng. (2015). User Acceptance of Mobile Healthcare Applications: An Integrated Model of UTAUT and HBM Theory. Korean Policy Sciences Review, 19(3), 203-236.
  35. R. Hoque & G. Sorwar. (2017). Understanding Factors Influencing the Adoption of mHealth by the Elderly: An Extension of the UTAUT Model. International Journal of Medical Informatics, 101, 75-84. DOI : 10.1016/j.ijmedinf.2017.02.002
  36. M. Cimperman, M. M. Brenčič, P. Trkman & M. D. L. Stanonik. (2013). Older Adults' Perceptions of Home Telehealth Services. Telemedicine and e-Health, 19(10), 786-790. DOI : 10.1089/tmj.2012.0272
  37. H. M. Kuo, C. W. Chen & C. H. Hsu. (2012). Retracted: A Study of a B2C Supporting Interface Design System for the Elderly. Human Factors and Ergonomics in Manufacturing & Service Industries, 22(6), 528-540. DOI : 10.1002/hfm.20297
  38. M. A. Farage, K. W. Miller, F. Ajayi & D. Hutchins. (2012). Design Principles to Accommodate Older Adults. Global Journal of Health Science, 4(2), 2-25. DOI : 10.5539/gjhs.v4n2p2
  39. R. Tenneti, D. Johnson, L. Goldenberg, R. A. Parker & F. A. Huppert. (2012). Towards a Capabilities Database to Inform Inclusive Design: Experimental Investigation of Effective Survey-based Predictors of Human-Product Interaction. Applied Ergonomics, 43(4), 713-726. DOI : 10.1016/j.apergo.2011.11.005
  40. R. Mostaghel & P. Oghazi. (2017). Elderly and Technology Tools: A Fuzzyset Qualitative Comparative Analysis. Quality & quantity, 51(5), 1969-1982. DOI : 10.1007/s11135-016-0390-6
  41. D. R. Kaufman et al. (2003). Usability in the Real World: Assessing Medical Information Technologies in Patients' Homes. Journal of Biomedical Informatics, 36(1-2), 45-60. DOI : 10.1016/S1532-0464(03)00056-X
  42. C. W. Lee & J. F. Coughlin. (2015). PERSPECTIVE: Older Adults' Adoption of Technology: An Integrated Approach to Identifying Determinants and Barriers. Journal of Product Innovation Management, 32(5), 747-759. DOI : 10.1111/jpim.12176
  43. I. Ajzen. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. DOI : 10.1016/0749-5978(91)90020-t
  44. E. M. Rogers. (1995). Diffusion of Innovation. New York : Free Press.
  45. A. Bandura, W. H. Freeman & R. Lightsey (1999). Self-efficacy: The Exercise of Control. Journal of Cognitive Psychotherapy, 13(2), 158-166. DOI : 10.1891/0889-8391.13.2.158
  46. A. Bandura. (1986). Social Foundations of Thought and Action. New Jersey : Englewood Cliffs.
  47. R. J. Holden & B. T. Karsh. (2010). The Technology Acceptance Model: Its Past and its Future in Health Care. Journal of Biomedical Informatics, 43(1), 159-172. DOI : 10.1016/j.jbi.2009.07.002
  48. R. L. Thompson, C. A. Higgins & J. M. Howell. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1), 125-143. DOI : 10.2307/249443
  49. S. H. Jeon, N. R. Park & C. C. Lee. (2011). Study on the Factors Affecting the Intention to Adopt Public Cloud Computing Service. Entrue Journal of Information Technology, 10(2), 97-112.
  50. H. S. Yoo, M. Y. Kim & O. B. Kwon. (2008). A Study of Factors Influencing Ubiquitous Computing Service Acceptance. The Jounal of Society for e-Business Studies, 13(2), 117-147.
  51. M. A. Jarvis, B. Sartorius & J. Chipps. (2019). Technology Acceptance of Older Persons Living in Residential Care. Information Development, 0266666919854164. DOI : 10.1177/0266666919854164
  52. R. P. Harte et al. (2014). Human Centered Design Considerations for Connected Health Devices for the Older Adult. Journal of Personalized Medicine, 4(2), 245-281. DOI : 10.3390/jpm4020245
  53. J. M. Werner, M. Carlson, M. Jordan-Marsh & F. Clar. (2011). Predictors of Computer Use in Community-Dwelling, Ethnically Diverse Older Adults. Human Factors, 53(5), 431-447. DOI : 10.1177/0018720811420840
  54. C. W. Lee & S. H. Jang. (2012). A Study of Usage Intention on the u-Healthcare Service with Voluntariness. Journal of the Korean Operations Research and Management Science Society, 37(4), 225-238. DOI : 10.7737/JKORMS.2012.37.4.225
  55. S. T. M. Peek et al. (2016). Older Adults' Reasons for Using Technology While Aging in Place. Gerontology, 62(2), 226-237. DOI : 10.1159/000430949
  56. P. L. Teh & C. C. Yong. (2011). Knowledge Sharing in IS Personnel: Organizational Behavior's Perspective. Journal of Computer Information Systems, 51(4), 11-21.
  57. B. Xie. (2007). Older Chinese, the Internet, and Well-being. Care Management Journals, 8(1), 33-38. DOI : 10.1891/152109807780494122
  58. J. Li, C. C. Hsu & C. T. Lin. (2019). Leisure Participation Behavior and Psychological Well-Being of Elderly Adults: An Empirical Study of Tai Chi Chuan in China. International Journal of Environmental Research and Public Health, 16(18), 3387. DOI : 10.3390/ijerph16183387
  59. M. Conci, F. Pianesi & M. Zancanaro. (2009). Useful, Social and Enjoyable: Mobile Phone Adoption by Older People. Proceedings of the 12th IFIP TC 13 International Conference on Human-Computer Interaction: Part I, 63-76. DOI : 10.1007/978-3-642-03655-2_7
  60. M. S. Lee, S. B. Hong & K. B. Suh (2019). An Analysis of Active Senior’s Leisure Smart Device Using Intention Applying Extended Technology Acceptance Model: Focusing on Leisure Engagement. The Korea Journal of Sports Science, 28(4), 183-194. DOI : 10.35159/kjss.2019.08.28.4.183