Acknowledgement
The authors gratefully acknowledge the financial support from the National Key Research and Development Program of China (Grant Nos. 2017YFC0703605 and 2016YFC0701106) and the National Natural Science Foundation of China (Grant Nos. 51878525 and 51778190).
References
- Ahmadizadeh, M., Mosqueda, G. and Reinhorn, A. (2008), "Compensation of actuator delay and dynamics for real-time hybrid structural simulation", Earthq. Eng. Struct. Dyn., 37(1), 21-42. https://doi.org/10.1002/eqe.743
- Bonnet, P.A., Lim, C.N., Williams, M.S., Blakeborough, A., Neild, S.A., Stoten, D.P. and Taylor, C.A. (2007), "Real-time hybrid experiments with newmark integration, mcsmd outer-loop control and multi-tasking strategies", Earthq. Eng. Struct. Dyn., 36(1), 119-141. https://doi.org/10.1002/eqe.628
- Chae, Y., Ricles, J.M. and Sause, R. (2014), "Large-scale real-time hybrid simulation of a three-story steel frame building with magneto-rheological dampers", Earthq. Eng. Struct. Dyn., 43(13), 1915-1933. https://doi.org/10.1002/eqe.2429
- Chang, C.M., Frankie, T.M., Spencer Jr, B.F. and Kuchma, D.A. (2015), "Multiple degrees of freedom positioning correction for hybrid simulation", J. Earthq. Eng., 19(2), 277-296. https://doi.org/10.1080/13632469.2014.962670
- Chinese Standard GB. 50011-2010 (2016), Code for Seismic Design of Buildings, National Standard of the People's Republic of China (NSPRC); Beijing, China. [In Chinese]
- Fermandois, G. and Spencer, B. (2017), "Model-based framework for multi-axial real-time hybrid simulation testing", Earthq. Eng. Eng. Vib., 16(4), 671-691. https://doi.org/10.1007/s11803-017-0407-8
- Horiuchi, T., Inoue, M., Konno, T. and Namita, Y. (1999), "Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber", Earthq. Eng. Struct. Dyn., 28(10), 1121-1141. https://doi.org/10.1002/(SICI)1096-9845(199910)28:10<1121::AID-EQE858>3.0.CO;2-O
- Iqbal, A., Pampanin, S. and Buchanan, A. (2008), "Experimental study of prestressed timber columns under bi-directional seismic loading", Proceedings of New Zealand Society for Earthquake Engineering (NZSEE) Conference, New Zealand. https://ir.canterbury.ac.nz/handle/10092/2658
- Khoo, H.H., Tsai, K.C., Tsai, C.Y., Tsai, C.Y. and Wang, K.J. (2016), "Bidirectional substructure pseudo-dynamic tests and analysis of a full-scale two-story buckling-restrained braced frame", Earthq. Eng. Struct. Dyn., 45(7), 1085-1107. https://doi.org/10.1002/eqe.2696
- Liu, G.Y. and Chang, S.Y. (2000), "Bi-axial pseudodynamic testing", Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, January.
- Liu, Y., Mei, Z., Wu, B., Bursi, O.S., Dai, K., Li, B. and Lu, Y. (2020), "Seismic behaviour and failure-mode-prediction method of a reinforced concrete rigid-frame bridge with thin-walled tall piers: Investigation by model-updating hybrid test", Eng. Struct., 208, 110302. https://doi.org/10.1016/j.engstruct.2020.110302
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), OpenSees command language manual, Pacific Earthquake Engineering Research (PEER) Center; University of California, Berkeley, CA, USA.
- Mercan, O., Ricles, J.M., Sause, R. and Marullo, T. (2009), "Kinematic transformations for planar multi-directional pseudodynamic testing", Earthq. Eng. Struct. Dyn., 38(9), 1093-1119. https://doi.org/10.1002/eqe.886
- Molina, F.J., Verzeletti, G., Magonette, G., Buchet, P.H. and Geradin, M. (1999), "Bi-directional pseudodynamic test of a full-size three-storey building", Earthq. Eng. Struct. Dyn., 28(12), 1541-1566. https://doi.org/10.1002/(SICI)1096-9845(199912)28:12<1541::AID-EQE880>3.0.CO;2-R
- Nakashima, M., Takai, H. and Kenkyujo, K.K. (1985), "Use of substructure techniques in pseudo dynamic testing", Research Paper No. 111; Building Research Institute of Japan, Ministry of Construction, Tsukuba, Japan.
- Nakashima, M., Kato, H. and Takaoka, E. (1992), "Development of real-time pseudo dynamic testing", Earthq. Eng. Struct. Dyn., 21(1), 79-92. https://doi.org/10.1002/eqe.4290210106
- Nakata, N., Spencer Jr, B.F. and Elnashai, A.S. (2010), "Sensitivity-based external calibration of multiaxial loading system", J. Eng. Mech., 136(2), 189-198. https://doi.org/10.1061/(ASCE)0733-9399(2010)136:2(189)
- Nakata, N., Krug, E. and King, A. (2014), "Experimental implementation and verification of multi-degrees-of-freedom effective force testing", Earthq. Eng. Struct. Dyn., 43(3), 413-428. https://doi.org/10.1002/eqe.2351
- Ou, G., Ozdagli, A.I., Dyke, S.J. and Wu, B. (2015), "Robust integrated actuator control: Experimental verification and real-time hybrid-simulation implementation", Earthq. Eng. Struct. Dyn., 44(3), 441-460. https://doi.org/10.1002/eqe.2479
- Pan, P., Zhao, G., Lu, X. and Deng, K. (2014), "Force-displacement mixed control for collapse tests of multistory buildings using quasi-static loading systems", Earthq. Eng. Struct. Dyn., 43(2), 287-300. https://doi.org/10.1002/eqe.2344
- Pan, P., Wang, T. and Nakashima, M. (2015), Development Of Online Hybrid Testing: Theory And Applications To Structural Engineering, Butterworth-Heinemann, Oxford, UK.
- Phillips, B.M., Takada, S., Spencer Jr, B.F. and Fujino, Y. (2014), "Feedforward actuator controller development using the backward-difference method for real-time hybrid simulation", Smart Struct. Syst., Int. J., 14(6), 1081-1103. https://doi.org/10.12989/sss.2014.14.6.1081
- Shao, X., Mueller, A. and Mohammed, B.A. (2016), "Real-time hybrid simulation with online model updating: Methodology and implementation", J. Eng. Mech., 142(2), 04015074. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000987
- Takanashi, K., Taniguchi, H. and Tanaka, H. (1980), "Inelastic response of H-shaped columns to two dimensional earthquake motions", Report NO. 13; Bulletin of Earthquake Resistant Structure Research Center. http://www.ers.iis.utokyo.ac.jp/PDF/ERSNo.13/1980-03-No.13-04.pdf
- Tan, Q., Wu, B., Shi, P., Xu, G., Wang, Z., Sun, J. and Lehman, D.E. (2020), "Experimental performance of a full-scale spatial RC frame with buckling-restrained braces subjected to bidirectional loading", J. Struct. Eng. (Under review)
- Tang, Z., Dietz, M., Li, Z. and Taylor, C. (2018), "The performance of delay compensation in real-time dynamic substructuring", J. Vib. Control, 24(21), 5019-5029. https://doi.org/10.1177/1077546317740488
- Thewalt, C.R. and Mahin, S.A. (1995), "Non-planar pseudo-dynamic testing", Earthq. Eng. Struct. Dyn., 24(5), 733-746. https://doi.org/10.1002/eqe.4290240509
- Tsai, K.C., Wang, H.Y., Chen, C.H., Liu, G.Y. and Wang, K.J. (2001), "Substructure pseudo dynamic performance of hybrid steel shear panels", Steel Struct., 1, 95-103.
- Wagg, D. and Stoten, D. (2001), "Substructuring of dynamical systems via the adaptive minimal control synthesis algorithm", Earthq. Eng. Struct. Dyn., 30(6), 865-877. https://doi.org/10.1002/eqe.44
- Wang, Z., Wu, B., Bursi, O.S., Xu, G. and Ding, Y. (2014), "An effective online delay estimation method based on a simplified physical system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 14(6), 1247-1267. http://doi.org/10.12989/sss.2014.14.6.1247
- Wang, J., Gui, Y., Zhu, F., Jin, F. and Zhou, M. (2016), "Real-time hybrid simulation of multi-story structures installed with tuned liquid damper", Struct. Control Heal. Monit., 23(7), 1015-1031. https://doi.org/10.1002/stc.1822
- Wang, Z., Wu, B., Xu, G. and Bursi, O.S. (2018), "An improved equivalent force control algorithm for hybrid seismic testing of nonlinear systems", Struct. Control Heal. Monit., 25(2), e2076. https://doi.org/10.1002/stc.2076
- Wang, Z., Ning, X., Xu, G., Zhou, H. and Wu, B. (2019a), "High performance compensation using an adaptive strategy for real-time hybrid simulation", Mech. Syst. Signal Process., 133, 106262. https://doi.org/10.1016/j.ymssp.2019.106262
- Wang, Z., Zhu, S., Xu, G., Xu, X. and Wu, B. (2019b), "Bi-directional hybrid test method and its verification", J. Vib. Shock, 38(9), 1-8. [In Chinese] https://doi.org/10.13465/j.cnki.jvs.2019.09.001
- Wu, T. and Song, W. (2019), "Real-time aerodynamics hybrid simulation: Wind-induced effects on a reduced-scale building equipped with full-scale dampers", J. Wind Eng. Ind. Aerod., 190, 1-9. https://doi.org/10.1016/j.jweia.2019.04.005
- Wu, B., Wang, Q., Benson Shing, P. and Ou, J. (2007), "Equivalent force control method for generalized real-time substructure testing with implicit integration", Earthq. Eng. Struct. Dyn., 36(9), 1127-1149. https://doi.org/10.1002/eqe.674
- Wu, B., Wang, Z. and Bursi, O.S. (2013), "Actuator dynamics compensation based on upper bound delay for real-time hybrid simulation", Earthq. Eng. Struct. Dyn., 42(12), 1749-1765. https://doi.org/10.1002/eqe.2296
- Wu, B., Tan, Q., Shi, P., Wang, Z., Xu, G., Sun, J. and Lehman, D.E. (2020), "Substructure modeling and loading control techniques for the test of a full-scale spatial RC frame with buckling-restrained braces subjected to bidirectional loading", J. Struct. Eng. (Under review)
- Xu, G., Wang, Z., Wu, B., Bursi, O.S., Tan, X., Yang, Q., Wen, L. and Jiang, H. (2017), "Pseudodynamic tests with substructuring of a full-scale precast box-modularized structure made of reinforced concrete shear walls", Struct. Des. Tall Spec., 26(16), e1354. https://doi.org/10.1002/tal.1354
- Yang, G., Wu, B., Ou, G., Wang, Z. and Dyke, S. (2017), "Hytest: Platform for structural hybrid simulations with finite element model updating", Adv. Eng. Soft., 112, 200-210. https://doi.org/10.1016/j.advengsoft.2017.05.007
- Zhao, J., French, C., Shield, C. and Posbergh, T. (2003), "Considerations for the development of real-time dynamic testing using servo-hydraulic actuation", Earthq. Eng. Struct. Dyn., 32(11), 1773-1794. https://doi.org/10.1002/eqe.301
- Wang, Z., Xu, G., Li, Q. and Wu, B. (2020), "An adaptive delay compensation method based on a discrete system model for real-time hybrid simulation", Smart Struct. Syst., Int. J., 25(5), 569-580. https://doi.org/10.12989/sss.2020.25.5.569