DOI QR코드

DOI QR Code

Magneto-electro-elastic vibration analysis of modified couple stress-based three-layered micro rectangular plates exposed to multi-physical fields considering the flexoelectricity effects

  • Khorasani, Mohammad (Department of Mechanical and Aerospace Engineering, Sapienza University) ;
  • Eyvazian, Arameh (Department of Mechanical and Industrial Engineering, Qatar University) ;
  • Karbon, Mohammed (Department of Mechanical and Industrial Engineering, Qatar University) ;
  • Tounsi, Abdelouahed (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Lampani, Luca (Department of Mechanical and Aerospace Engineering, Sapienza University) ;
  • Sebaey, Tamer A. (Department of Mechanical Design and Production, Faculty of Engineering, Zagazig University)
  • Received : 2019.12.31
  • Accepted : 2020.04.11
  • Published : 2020.09.25

Abstract

In this paper, based on the CPT, motion equations for a sandwich plate containing a core and two integrated face-sheets have derived. The structure rests on the Visco-Pasternak foundation, which includes normal and shear modules. The piezo-magnetic core is made of CoFe2O4 and also is subjected to 3D magnetic potential. Two face sheets at top and bottom of the core are under electrical fields. Also, in order to obtain more accuracy, the effect of flexoelectricity has took into account at face sheets' relations in this work. Flexoelectricity is a property of all insulators whereby they polarize when subject to an inhomogeneous deformation. This property plays a crucial role in small-scale rather than macro scale. Employing CPT, Hamilton's principle, flexoelectricity considerations, the governing equations are derived and then solved analytically. By present work a detailed numerical study is obtained based on Piezoelectricity, Flexoelectricity and modified couple stress theories to indicate the significant effect of length scale parameter, shear correction factor, aspect and thickness ratios and boundary conditions on natural frequency of sandwich plates. Also, the figures show that there is an excellent agreement between present study and previous researches. These finding can be used for automotive industries, aircrafts, marine vessels and building industries.

Keywords

References

  1. Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044
  2. Anh, V.T.T., Bich, D.H. and Duc, N.D. (2015), "Nonlinear stability analysis of thin FGM annular spherical shells on elastic foundations under external pressure and thermal loads", Eur. J. Mech. - A/Solids, 50, 28-38. https://doi: 10.1016/j.euromechsol.2014.10.004
  3. Ansari, R. and Sahmani, S. (2011), "Surface stress effects on the free vibration behavior of nanoplates", Int. J. Eng. Sci., 49(11), 1204-1215. https://doi.org/10.1016/j.ijengsci.2011.06.005
  4. Arshid, E. and Khorshidvand, A.R. (2018), "Thin-Walled Structures Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin Wall. Struct., 125(January), 220-233. https://doi.org/10.1016/j.tws.2018.01.007
  5. Arshid, E., Khorshidvand, A.R. and Khorsandijou, S.M. (2019), "The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT", Struct. Eng. Mech., Int. J., 70(1), 97-112. https://doi.org/10.12989/sem.2019.70.1.097
  6. Barati, M.R. (2017), "Coupled effects of electrical polarization-strain gradient on vibration behavior of double-layered flexoelectric nanoplates", Smart Struct. Syst., Int. J., 20(5), 573-581. https://doi.org/10.12989/sss.2017.20.5.573
  7. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., Int. J., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699
  8. Bui, T.Q., Doan, D.H., Van Do, T., Hirose, S. and Duc, N.D. (2016), "High frequency modes meshfree analysis of Reissner-Mindlin plates", J. Sci. Adv. Mater. Devices, 1, 400-412. https://doi:10.1016/j.jsamd.2016.08.005
  9. Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. https://doi: 10.1016/j.ast.2018.03.020
  10. Duc, N.D. and Cong, P.H. (2015), "Nonlinear vibration of thick FGM plates on elastic foundation subjected to thermal and mechanical loads using the first-order shear deformation plate theory", Cogent Eng., 2(1), 1045222. https://doi: 10.1080/23311916.2015.1045222
  11. Duc, N.D. and Quan, T.Q. (2014), "Transient responses of functionally graded double curved shallow shells with temperature-dependent material properties in thermal environment", Eur. J. Mech. - A/Solids, 47, 101-123. https://doi: 10.1016/j.euromechsol.2014.03.002
  12. Duc, N.D. and Thang, P.T. (2014), "Nonlinear buckling of imperfect eccentrically stiffened metal-ceramic-metal S-FGM thin circular cylindrical shells with temperature-dependent properties in thermal environments", Int. J. Mech. Sci., 81, 17-25. https://doi: 10.1016/j.ijmecsci.2014.01.016
  13. Duc, N.D. and Tung, H.V. (2010), "Mechanical and thermal postbuckling of shear-deformable FGM plates with temperature-dependent properties", Mech. Compos. Mater., 46, 461-476. https://doi: 10.1007/s11029-010-9163-9
  14. Duc, N.D., Cong, P.H., Anh, V.M., Quang, V.D., Tran, P., Tuan, N.D. and Thinh, N.H. (2015), "Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment", Compos. Struct., 132, 597-609. https://doi:10.1016/j.compstruct.2015.05.072
  15. Duc, N.D., Nguyen, P.D. and Khoa, N.D. (2017a), "Nonlinear dynamic analysis and vibration of eccentrically stiffened S-FGM elliptical cylindrical shells surrounded on elastic foundations in thermal environments", Thin-Wall. Struct., 117, 178-189. https://doi:10.1016/j.tws.2017.04.013
  16. Duc, N.D., Khoa, N.D. and Thiem, H.T. (2017b), "Nonlinear thermo-mechanical response of eccentrically stiffened Sigmoid FGM circular cylindrical shells subjected to compressive and uniform radial loads using the Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 25, 1156-1167. https://doi:10.1080/15376494.2017.1341581
  17. Ebrahimi, F. and Barati, M.R. (2016), "An exact solution for buckling analysis of embedded piezo-electro-magnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84. http://doi.org/10.12989/anr.2016.4.2.065
  18. Ebrahimi, F., Daman, M. and Jafari, A. (2017), "Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment", Smart Struct. Syst., Int. J., 20(6), 709-728. https://doi.org/10.12989/sss.2017.20.6.709
  19. Ebrahimi, F., Nouraei, M., Dabbagh, A. and Civalek, O. (2019a), "Buckling analysis of graphene oxide powder-reinforced nanocomposite beams subjected to non-uniform magnetic field", Struct. Eng. Mech., Int. J., 71(5), 351-361. https://doi.org/10.12989/sem.2019.71.4.351
  20. Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019b), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., Int. J., 7(4), 223-231. https://doi.org/10.12989/anr.2019.7.4.223
  21. Fu, J.Y., Zhu, W., Li, N. and Cross, L.E. (2006), "Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition", J. Appl. Phys., 100(2), 024112. https://doi.org/10.1063/1.2219990
  22. Guerroudj, H.Z., Yeghnem, R., Kaci, A., Zaoui, F.Z., Benyoucef, S. and Tounsi, A. (2018), "Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory", Smart Struct. Syst., Int. J., 22(1), 121-132. https://doi.org/10.12989/sss.2018.22.1.121
  23. Hosseini-Hashemi, S., Kermajani, M. and Nazemnezhad, R. (2015), "An analytical study on the buckling and free vibration of rectangular nanoplates using nonlocal third-order shear deformation plate theory", Eur. J. Mech., A/Solids, 51, 29-43. https://doi.org/10.1016/j.euromechsol.2014.11.005
  24. Hu, S. and Shen, S. (2010), "Variational principles and governing equations in nano-dielectrics with the flexoelectric effect", Sci. China Phys. Mech. Astron., 53(8), 1497-1504. https://doi.org/10.1007/s11433-010-4039-5
  25. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
  26. Khoa, N.D., Thiem, H.T. and Duc, N.D. (2017), "Nonlinear buckling and postbuckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal-ceramic-metal layers in thermal environment using Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 26, 248-259. https://doi:10.1080/15376494.2017.1341583
  27. Kiran, M.C. and Kattimani, S.C. (2018), "Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate", Smart Struct. Syst., Int. J., 21(4), 493-519. https://doi.org/10.12989/sss.2018.21.4.493
  28. Lao, C.S., Kuang, Q., Wang, Z.L., Park, M.C. and Deng, Y. (2007), "Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors", Appl. Phys. Lett., 90(26), 2-4. https://doi.org/10.1063/1.2748097
  29. Liu, C., Hu, S. and Shen, S. (2012), "Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire", Smart Mater. Struct., 21(11), 115024. https://doi.org/10.1088/0964-1726/21/11/115024
  30. Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031
  31. Ma, W. and Cross, L.E. (2001), "Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics", Appl. Phys. Lett., 78(19), 2920-2921. https://doi.org/10.1063/1.1356444
  32. Ma, W. and Cross, L.E. (2002), "Flexoelectric polarization of barium strontium titanate in the paraelectric state", Appl. Phys. Lett., 81(18), 3440-3442. https://doi.org/10.1063/1.1518559
  33. Ma, W. and Cross, L.E. (2006), "Flexoelectricity of barium titanate", Appl. Phys. Lett., 88(23), 2004-2007. https://doi.org/10.1063/1.2211309
  34. Mahesh, V., Kattimani, S., Harursampath, D. and Trung, N.T. (2019), "Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment", Smart Struct. Syst., Int. J., 24(2), 267-292. https://doi.org/10.12989/sss.2019.24.2.267
  35. Maranganti, R., Sharma, N.D. and Sharma, P. (2006), "Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green's function solutions and embedded inclusions", Phys. Rev. B - Condens Matt. Mater. Phys., 74(1), 1-14. https://doi.org/10.1103/PhysRevB.74.014110
  36. Mashkevich, V.S. (1957), "Electrical, optical and elastic properties of diamond type crystals", Sov. Phys. JETP, 5(4), 707-713.
  37. Mehrabadi, S.J., Aragh, B.S., Khoshkhahesh, V. and Taherpour, A. (2012), "Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes", Compos. Part B: Eng., 43(4), 2031-2040. https://doi.org/10.1016/j.compositesb.2012.01.067
  38. Mindlin, R.D. (1968), "Polarization gradient in elastic dielectrics", Int. J. Solids Struct., 4(6), 637-642. https://doi.org/10.1016/0020-7683(68)90079-6
  39. Minh, P.P. and Duc, N.D. (2019), "The effect of cracks on the stability of the functionally graded plates with variable-thickness using HSDT and phase-field theory", Compos. Part B: Eng., 175, 107086. https://doi:10.1016/j.compositesb.2019.107086
  40. Nguyen, T.D., Mao, S., Yeh, Y.-W., Purohit, P.K. and McAlpine, M.C. (2013), "Nanoscale Flexoelectricity", Adv. Mater., 25(7), 946-974. https://doi.org/10.1002/adma.201203852
  41. Rahmani, O., Hosseini, S.A.H., Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., Int. J., 26(5), 607-620. https://doi.org/10.12989/scs.2018.26.5.607
  42. Robinson, C.R., White, K.W. and Sharma, P. (2012), "Elucidating the mechanism for indentation size-effect in dielectrics", Appl. Phys. Lett., 101(12), 122901. https://doi.org/10.1063/1.4753799
  43. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., Int. J., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805
  44. Sharma, N.D., Maranganti, R. and Sharma, P. (2007), "On the possibility of piezoelectric nanocomposites without using piezoelectric materials", J. Mech. Phys. Solids, 55(11), 2328-2350. https://doi.org/10.1016/j.jmps.2007.03.016
  45. Sharma, N.D., Landis, C.M. and Sharma, P. (2010), "Piezoelectric thin-film super-lattices without using piezoelectric materials", J. Appl. Phys., 108(2), 024304. https://doi.org/10.1063/1.3443404
  46. Shen, S. and Hu, S. (2010), "A theory of flexoelectricity with surface effect for elastic dielectrics", J. Mech. Phys. Solids, 58(5), 665-677. https://doi.org/10.1016/j.jmps.2010.03.001
  47. Shu, L., Wei, X., Pang, T., Yao, X. and Wang, C. (2011), "Symmetry of flexoelectric coefficients in crystalline medium", J. Appl. Phys., 110(10), 104106. https://doi.org/10.1063/1.3662196
  48. Tagantsev, A.K. (1986), "Piezoelectricity and flexoelectricity in crystalline dielectrics", Phys. Rev. B, 34(8), 5883-5889. https://doi.org/10.1103/PhysRevB.34.5883
  49. Tagantsev, A.K. and Gerra, G. (2006), "Interface-induced phenomena in polarization response of ferroelectric thin films", J. Appl. Phys., 100(5), 051607. https://doi.org/10.1063/1.2337009
  50. Tanner, S.M., Gray, J.M., Rogers, C.T., Bertness, K.A. and Sanford, N.A. (2007), "High-Q GaN nanowire resonators and oscillators", Appl. Phys. Lett., 91(20), 203117. https://doi.org/10.1063/1.2815747
  51. Van Thu, P. and Duc, N.D. (2016), "Non-linear dynamic response and vibration of an imperfect three-phase laminated nanocomposite cylindrical panel resting on elastic foundations in thermal environments", Sci. Eng. Compos. Mater., 24. https://doi.org/10.1515/secm-2015-0467
  52. Wang, Z.L. (2006), "Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays", Science, 312(5771), 242-246. https://doi.org/10.1126/science.1124005
  53. Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Mathe. Model., 39(18), 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058
  54. Yang, X.D., Chen, L.Q. and Zu, J.W. (2011), "Vibrations and stability of an axially moving rectangular composite plate", J. Appl. Mech., 78(1), 011018-011029. https://doi.org/10.1115/1.4002002
  55. Yang, W., Liang, X. and Shen, S. (2015), "Electromechanical responses of piezoelectric nanoplates with flexoelectricity", Acta Mechanica, 226(9), 3097-3110. https://doi.org/10.1007/s00707-015-1373-8
  56. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., Int. J., 21(1), 15-21. https://doi.org/10.12989/sss.2018.21.1.015
  57. Yudin, P.V. and Tagantsev, A.K. (2013), "Fundamentals of flexoelectricity in solids", Nanotechnology, 24(43), 432001. https://doi.org/10.1088/0957-4484/24/43/432001
  58. Zhang, Z. and Jiang, L. (2014), "Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity", J. Appl. Phys., 116(13), 134308. https://doi.org/10.1063/1.4897367
  59. Zhang, Z., Yan, Z. and Jiang, L. (2014), "Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate", J. Appl. Phys., 116(1), 014307. https://doi.org/10.1063/1.4886315
  60. Zhang, S., Xu, M., Liu, K. and Shen, S. (2015), "A flexoelectricity effect-based sensor for direct torque measurement", J. Phys. D: Appl. Phys., 48(48), 485502. https://doi.org/10.1088/0022-3727/48/48/485502
  61. Zhao, M., Qian, C., Lee, S.W.R., Tong, P., Suemasu, H. and Zhang, T.Y. (2007), "Electro-elastic analysis of piezoelectric laminated plates", Adv. Compos. Mater., 16(1), 63-81. https://doi.org/10.1163/156855107779755273
  62. Zenkour, A.M. (2015), "A comparative study for bending of cross-ply laminated plates resting on elastic foundations", Smart Struct. Syst, Int. J., 15(6), 1562-1582. https://doi.org/10.12989/sss.2015.15.6.1569
  63. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010
  64. Zubko, P., Catalan, G. and Tagantsev, A.K. (2013), "Flexoelectric effect in solids", Annual Rev. Mater. Res., 43(1), 387-421. https://doi.org/10.1146/annurev-matsci-071312-121634

Cited by

  1. Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2020, https://doi.org/10.12989/anr.2021.11.2.203
  2. Thermomechanical Buckling Analysis of the E&P-FGM Beams Integrated by Nanocomposite Supports Immersed in a Hygrothermal Environment vol.26, pp.21, 2020, https://doi.org/10.3390/molecules26216594