DOI QR코드

DOI QR Code

Ground surface changes detection using interferometric synthetic aperture radar

  • Foong, Loke Kok (Department for Management of Science and Technology Development, Ton Duc Thang University) ;
  • Jamali, Ali (Faculty of Surveying Engineering, Apadana Institute of Higher Education) ;
  • Lyu, Zongjie (Institute of Research and Development, Duy Tan University)
  • 투고 : 2019.12.15
  • 심사 : 2020.06.06
  • 발행 : 2020.09.25

초록

Disasters, including earthquakes and landslides, have enormous economic and social losses besides their impact on environmental disruption. Iran, and particularly its Western part, is known as an earthquake susceptible area due to numerous strong ground motions. Studying ecological changes due to climate change can improve the public and expert sector's awareness and response to future disastrous events. Synthetic Aperture Radar (SAR) data and Interferometric Synthetic Aperture Radar (InSAR) technologies are appropriate tools for modeling and surface deformation modeling. This paper proposes an efficient approach to detect ground deformation changes using Sentinel-1A. The focal point of this research is to map the ground surface deformation modeling is presented using InSAR technology over Sarpol-e Zahab on 25th November 2018 as a study case. For surface deformation modeling and detection of the ground movement due to earthquake SARPROZ in MATLAB programming language is used and discussed. Results show that there is a general ground movement due to the Sarpol-e Zahab earthquake between -7 millimeter to +18 millimeter in the study area. This research verified previous researches on the advanced image analysis techniques employed for mapping ground movement, where InSAR provides a reliable tool for assisting engineers and the decision-maker in choosing proper policies in a time of disasters. Based on the result, 574 out of 682 damaged buildings and infrastructures due to the 2017 Sarpol-e Zahab earthquake have moved from -2 to +17 mm due to the 2018 earthquake with a magnitude of 6.3 Richter. Results show that mountainous areas have suffered land subsidence, where urban areas had land uplift.

키워드

참고문헌

  1. Agard, P., Omrani, J., Jolivet, L. and Mouthereau, F. (2005), "Convergence history across Zagros (Iran): constraints from collisional and earlier deformation", Int. J. Earth Sci., 94(3), 401-419. https://doi.org/10.1007/s00531-005-0481-4
  2. Barnhart, W.D., Brengman, C.M., Li, S. and Peterson, K.E. (2018), "Ramp-flat basement structures of the Zagros Mountains inferred from co-seismic slip and afterslip of the 2017 Mw7.3 Darbandikhan, Iran/Iraq earthquake", Earth Planet. Sci. Lett., 496, 96-107. https://doi.org/10.1016/j.epsl.2018.05.036
  3. Baziar, M.H. and Rostami, H. (2017), "Earthquake demand energy attenuation model for liquefaction potential assessment", Earthq. Spectra, 33(2), 757-780. https://doi.org/10.1193/030816eqs037m
  4. Berardino, P., Fornaro, G., Lanari, R. and Sansosti, E. (2002), "A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms", IEEE Transact. Geosci. Remote Sensing, 40(11), 2375-2383. https://doi.org/10.1109/TGRS.2002.803792
  5. Berberian, M. (1995), "Master "blind" thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics", Tectonophysics, 241(3-4), 193-224. https://doi.org/10.1016/0040-1951(94)00185-C
  6. Bui, D.T., Moayedi, H., Gor, M., Jaafari, A. and Foong, L.K. (2019a), "Predicting slope stability failure through machine learning paradigms", ISPRS Int. J. Geo-Inform., 8(9), 395. https://doi.org/10.3390/ijgi8090395
  7. Bui, D.T., Moayedi, H., Kalantar, B., Osouli, A., Gor, M., Pradhan, B., Nguyen, H. and Rashid, A.S.A. (2019b), "Harris hawks optimization: A novel swarm intelligence technique for spatial assessment of landslide susceptibility", Sensors, 19, 3590. https://doi.org/10.3390/s19163590
  8. Bui, D.T., Moayedi, H., Kalantar, B., Osouli, A., Pradhan, B., Nguyen, H. and Rashid, A.S.A. (2019c), "A novel swarm intelligence-Harris hawks optimization for spatial assessment of landslide susceptibility", Sensors, 19(16), 3590. https://doi.org/10.3390/s19163590
  9. Chen, Q., Cheng, H., Yang, Y., Liu, G. and Liu, L. (2014), "Quantification of mass wasting volume associated with the giant landslide Daguangbao induced by the 2008 Wenchuan earthquake from persistent scatterer InSAR", Remote Sens. Environ., 152, 125-135. https://doi.org/10.1016/j.rse.2014.06.002
  10. Chen, H., Zhang, Q., Luo, J., Xu, Y. and Zhang, X. (2020), "An enhanced Bacterial Foraging Optimization and its application for training kernel extreme learning machine", Appl. Soft Comput., 86, 105884. https://doi.org/10.1016/j.asoc.2019.105884
  11. Choi, J.C., Lee, S.R., Kim, Y. and Song, Y.H. (2011), "Real-time unsaturated slope reliability assessment considering variations in monitored matric suction", Smart Struct. Syst., Int. J., 7(4), 263-274. https://doi.org/10.12989/sss.2011.7.4.263
  12. Dai, K., Li, Z., Tomas, R., Liu, G., Yu, B., Wang, X., Cheng, H., Chen, J. and Stockamp, J. (2016), "Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry", Remote Sens. Environ., 186, 501-513. https://doi.org/10.1016/j.rse.2016.09.009
  13. Debella-Gilo, M. and Kaab, A. (2012), "Measurement of surface displacement and deformation of mass movements using least squares matching of repeat high resolution satellite and aerial images", Remote Sensing, 4(1) 43-67. https://doi.org/10.3390/rs4010043
  14. Dicelis, G., Assumpcao, M., Kellogg, J., Pedraza, P. and Dias, F. (2016), "Estimating the 2008 Quetame (Colombia) earthquake source parameters from seismic data and InSAR measurements", J. South Am. Earth Sci., 7, 250-265. https://doi.org/10.1016/j.jsames.2016.09.011
  15. Du, Y., Feng, G., Liu, L., Fu, H., Peng, X. and Wen, D. (2020), "Understanding Land Subsidence Along the Coastal Areas of Guangdong, China, by Analyzing Multi-Track MTInSAR Data", Remote Sensing, 12(2) 299. https://doi.org/10.3390/rs12020299
  16. Du, Y., Feng, G., Liu, L., Fu, H., Peng, X. and Wen, D. Ebrahimi, M., Moradi, A., Bejvani, M. and Tafreshi, M.D. (2016), "Application of STA/LTA Based on Cross-Correlation to Passive Seismic Data", Proceedings of the 6th EAGE Workshop on Passive Seismic, Muscat, Oman, January, pp. 1-5.
  17. European Space Agency (2016), Interferometry Tutorial.
  18. Fang, L., Xu, Y., Yao, W. and Stilla, U. (2016), "Estimation of glacier surface motion by robust phase correlation and point like features of SAR intensity images", ISPRS J. Photogram. Remote Sensing, 121, 92-112. https://doi.org/10.1016/j.isprsjprs.2016.08.012
  19. Farolfi, G., Piombino, A. and Catani, F. (2019), "Fusion of GNSS and Satellite Radar Interferometry: Determination of 3D Fine-Scale Map of Present-Day Surface Displacements in Italy as Expressions of Geodynamic Processes", Remote Sensing, 11(4), 394. https://doi.org/10.3390/rs11040394
  20. Ferretti, A., Prati, C. and Rocca, F. (1999), "Permanent scatterers in SAR interferometry", Proceedings of IEEE 1999 International Geoscience and Remote Sensing Symposium, IGARSS'99, (Cat. No.99CH36293), Vol.1523, pp. 1528-1530.
  21. Glenn, N.F., Streutker, D.R., Chadwick, D.J., Thackray, G.D. and Dorsch, S.J. (2006), "Analysis of LiDAR-Derived Topographic Information for Characterizing and Differentiating Landslide Morphology and Activity", Geomorphology, 73(1). https://doi.org/10.1016/j.geomorph.2005.07.006
  22. Guha-Sapir, D., Vos, F., Below, R. and Ponserre, S. (2012), "Annual disaster statistical review 2011: the numbers and trends", In: Centre for Research on the Epidemiology of Disasters (CRED), C.f.R.o.t.E.o.D. (Ed.).
  23. He, L., Tan, J., Hu, Q., He, S., Cai, Q., Fu, Y. and Tang, S. (2018), "Non-contact measurement of the surface displacement of a slope based on a smart binocular vision system", Sensors, 18(9), 2890. https://doi.org/10.3390/s18092890
  24. Hooper, A. (2008), "A multi-temporal InSAR method is incorporating both persistent scatterer and small baseline approaches", Geophys. Res. Lett., 35(16). https://doi.org/10.1029/2008GL034654
  25. Hugenholtz, C.H., Whitehead, K., Brown, O.W., Barchyn, T.E., Moorman, B.J., LeClair, A., Riddell, K. and Hamilton, T. (2013), "Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model", Geomorphology, 194, 16-24. https://doi.org/10.1016/j.geomorph.2013.03.023
  26. Jinlong, L., Wenjie, X., Jianjing, Z., Wei, L., Xilin, S. and Chunhe, Y. (2020), "Modeling the mining of energy storage salt caverns using a structural dynamic mesh", Energy, 193, 116730. https://doi.org/10.1016/j.energy.2019.116730
  27. Kargar, P., Osouli, A., Vaughn, B., Hosseini, A. and Rostami, H. (2020), "Feasibility Study of Collapse Remediation of Illinois Loess Using Electrokinetics Technique by Nanosilica and Salt", Proceedings of Geo-Congress 2020, Foundations, Soil Improvement, and Erosion, Reston, VA, USA, Febraury, pp. 667-675. https://doi.org/10.1061/9780784482780.066
  28. Karimzadeh, S., Cakir, Z., Osmanoglu, B., Schmalzle, G., Miyajima, M., Amiraslanzadeh, R. and Djamour, Y. (2013), "Interseismic strain accumulation across the North Tabriz Fault (NW Iran) deduced from InSAR time series", J. Geodyn., 66, 53-58. https://doi.org/10.1016/j.jog.2013.02.003
  29. Karimzadeh, S., Matsuoka, M., Miyajima, M., Adriano, B., Fallahi, A. and Karashi, J. (2018), "Sequential SAR coherence method for the monitoring of buildings in Sarpole-Zahab, Iran", Remote Sensing, 10(8), 1255. https://doi.org/10.3390/rs10081255
  30. Kallel, A., Erguler, Z.A., Cui, Z.D., Karrech, A., Karakus, M., Kulatilake, P. and Shukla, S.K. (2019), Recent Advances in Geo-Environmental Engineering, Geomechanics and Geotechnics, and Geohazards, Springer, Cham, pp. 481-483.
  31. Li, Z. and Bethel, J. (2008), "Image coregistration in SAR interferometry", Int. Arch. Photogram. Remote Sens. Spatial Inform. Sci., 37, 433-438.
  32. Liu, W., Zhang, X., Li, H. and Chen, J. (2020), "Investigation on the deformation and strength characteristics of rock salt under different confining pressures", Geotech. Geol. Eng. https://doi.org/10.1007/s10706-020-01388-1
  33. Mei, D.P. (2017), "Structural health monitoring-based dynamic behavior evaluation of a long-span high-speed railway bridge", Smart Struct. Syst., Int. J., 20(2), 197-205. https://doi.org/10.12989/sss.2017.20.2.197
  34. Moayedi, H., Huat, B.B., Ali, T.A.M., Asadi, A., Moayedi, F. and Mokhberi, M. (2011), "Preventing landslides in times of rainfall: case study and FEM analyses", Disaster Prev. Manage.: Int. J, 20(2), 115-124. https://doi.org/10.1108/09653561111126067
  35. Moayedi, H., Mehrabi, M., Kalantar, B., Abdullahi Mu'azu, M.A., Rashid, A.S., Foong, L.K. and Nguyen, H. (2019a), "Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial hazard assessment of seismic-induced landslide", Geomat. Natural Hazards Risk, 10(1), 1879-1911. https://doi.org/10.1080/19475705.2019.1650126
  36. Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019b), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0
  37. Moayedi, H., Osouli, A., Bui, D.T., Kok Foong, L., Nguyen, H. and Kalantar, B. (2019c), "Two novel neural-evolutionary predictive techniques of dragonfly algorithm (DA) and biogeography-based optimization (BBO) for landslide susceptibility analysis", Geomat. Natural Hazards Risk, 10(1), 2429-2453. https://doi.org/10.1080/19475705.2019.1699608
  38. Moayedi, H., Osouli, A., Tien Bui, D. and Foong, L.K. (2019d), "Spatial landslide susceptibility assessment based on novel neural-metaheuristic geographic information system based ensembles", Sensors, 19(21), 4698. https://doi.org/10.3390/s19214698
  39. Moayedi, H., Tien Bui, D. and Kok Foong, L. (2019e), "Slope stability monitoring using novel remote sensing based fuzzy logic", Sensors, 19(21), 4636. https://doi.org/10.3390/s19214636
  40. Montecino, H.D., de Freitas, S.R., Baez, J.C. and Ferreira, V.G. (2017), "Effects on Chilean Vertical Reference Frame due to the Maule Earthquake co-seismic and post-seismic effects", J. Geodyn., 112, 22-30. https://doi.org/10.1016/j.jog.2017.07.006
  41. Motaghi, K., Shabanian, E. and Kalvandi, F. (2017), "Underplating along the northern portion of the Zagros suture zone, Iran", Geophys. J. Int., 210(1), 375-389. https://doi.org/10.1093/gji/ggx168
  42. Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H. and Abdullahi, M.A.M. (2019), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomat. Natural Hazards Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782
  43. Oveisi, B., Lave, J., Van Der Beek, P., Carcaillet, J., Benedetti, L. and Aubourg, C. (2009), "Thick-and thin-skinned deformation rates in the central Zagros simple folded zone (Iran) indicated by displacement of geomorphic surfaces", Geophys. J. Int., 176(2), 627-654. https://doi.org/10.1111/j.1365-246X.2008.04002.x
  44. Pawluszek-Filipiak, K. and Borkowski, A. (2020), "Integration of DInSAR and SBAS Techniques to Determine Mining-Related Deformations Using Sentinel-1 Data: The Case Study of Rydultowy Mine in Poland", Remote Sensing, 12(2), 242. https://doi.org/10.3390/rs12020242
  45. Perissin, D. (2019), SARPROZ Manual.
  46. Qiao, W. and Yang, Z. (2019a), "Modified dolphin swarm algorithm based on chaotic maps for solving high-dimensional function optimization problems", IEEE Access, 7, 110472-110486. https://doi.org/10.1109/ACCESS.2019.2931910
  47. Qiao, W. and Yang, Z. (2019b), "Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm", IEEE Access, 7, 138972-138989. https://doi.org/10.1109/ACCESS.2019.2942169
  48. Qiao, W., Huang, K., Azimi, M. and Han, S. (2019a), "A novel hybrid prediction model for hourly gas consumption in supply side based on improved whale optimization algorithm and relevance vector machine", IEEE Access, 7, 88218-88230. https://doi.org/10.1109/ACCESS.2019.2918156
  49. Qiao, W., Tian, W., Tian, Y., Yang, Q., Wang, Y. and Zhang, J. (2019b), "The forecasting of PM2. 5 using a hybrid model based on wavelet transform and an improved deep learning algorithm", IEEE Access, 7, 142814-142825. https://doi.org/10.1109/ACCESS.2019.2944755
  50. Rostami, H., Baziar, M.H. and Alibolandi, M. (2018), "Reevaluation of SPT-Based Liquefaction Case History Using Earthquake Demand Energy", Geotechnical Earthquake Engineering and Soil Dynamics V: Liquefaction Triggering, Consequences, and Mitigation, Reston, VA, USA, pp. 493-501. https://doi.org/10.1061/9780784481455.047
  51. Schumann, G.J.P. (2017), Remote Sensing of Floods, Oxford University Press.
  52. Shen, L., Chen, H., Yu, Z., Kang, W., Zhang, B., Li, H., Yang, B. and Liu, D. (2016), "Evolving support vector machines using fruit fly optimization for medical data classification", Knowledge-Based Syst., 96, 61-75. https://doi.org/10.1016/j.knosys.2016.01.002
  53. Shi, X., Zhang, L., Zhong, Y., Zhang, L. and Liao, M. (2020), "Detection and characterization of active slope deformations with Sentinel-1 InSAR analyses in the Southwest Area of Shanxi, China", Remote Sensing, 12(3), 392. https://doi.org/10.3390/rs12030392
  54. Stumpf, A. and Kerle, N. (2011), "Object-oriented mapping of landslides using Random Forests", Remote Sens. Environ., 115(10), 2564-2577. https://doi.org/10.1016/j.rse.2011.05.013
  55. Taleshi, A.A., Arab-Amiri, A., Ebrahimi, M. and Abbasinia, M. (2016b), "Two and three-dimonsional ERT modelling for a buried tunnel", J. Emerg. Trends Eng. Appl. Sci., 7(3), 118-127.
  56. Tsai, T.L. and Chen, H.F. (2010), "Effects of degree of saturation on shallow landslides triggered by rainfall", Environ. Earth Sci., 59(6), 1285-1295. https://doi.org/10.1007/s12665-009-0116-3
  57. Valerio, E., Tizzani, P., Carminati, E., Doglioni, C., Pepe, S., Petricca, P., De Luca, C., Bignami, C., Solaro, G., Castaldo, R. and De Novellis, V. (2018), "Ground Deformation and Source Geometry of the 30 October 2016 Mw 6.5 Norcia Earthquake (Central Italy) Investigated Through Seismological Data, DInSAR Measurements, and Numerical Modelling", Remote Sensing, 10(12), 1901. https://doi.org/10.3390/rs10121901
  58. Van Dao, D., Jaafari, A., Bayat, M., Mafi-Gholami, D., Qi, C., Moayedi, H., Van Phong, T., Ly, H.B., Le, T.T., Trinh, P.T. and Luu, C. (2020), "A spatially explicit deep learning neural network model for the prediction of landslide susceptibility", CATENA, 188, 104451. https://doi.org/10.1016/j.catena.2019.104451
  59. Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M.R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R. and Tavakoli, F. (2004), "Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman", Geophys. J. Int., 157(1), 381-398. https://doi.org/10.1111/j.1365-246X.2004.02222.x
  60. Wang, M. and Chen, H. (2020), "Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis", Appl. Soft Comput., 88, 105946. https://doi.org/10.1016/j.asoc.2019.105946
  61. Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z., Huang, H. and Tong, C. (2017), "Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses", Neurocomputing, 267, 69-84. https://doi.org/10.1016/j.neucom.2017.04.060
  62. Wang, B., Zhao, C., Zhang, Q. and Peng, M. (2019), "Sequential InSAR Time Series Deformation Monitoring of Land Subsidence and Rebound in Xi'an, China", Remote Sensing, 11(23), 2854. https://doi.org/10.3390/rs11232854
  63. Wang, H., Moayedi, H. and Foong, L.K. (2020), "Genetic algorithm hybridized with multilayer perceptron to have an economical slope stability design", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-00957-5
  64. Wright, T.J., Parsons, B.E. and Lu, Z. (2004), "Toward mapping surface deformation in three dimensions using InSAR", Geophys. Res. Lett., 31(1). https://doi.org/10.1029/2003GL018827
  65. Xu, X. and Chen, H.-L. (2014), "Adaptive computational chemotaxis based on field in bacterial foraging optimization", Soft Computing, 18(4), 797-807. https://doi.org/10.1007/s00500-013-1089-4
  66. Xu, Y., Chen, H., Luo, J., Zhang, Q., Jiao, S. and Zhang, X. (2019), "Enhanced Moth-flame optimizer with mutation strategy for global optimization", Inform. Sci., 492, 181-203. https://doi.org/10.1016/j.ins.2019.04.022
  67. Yang, Y.J., Hwang, C., Hung, W.C., Fuhrmann, T., Chen, Y.A. and Wei, S.H. (2019), "Surface deformation from sentinel-1A InSAR: Relation to seasonal groundwater extraction and rainfall in central Taiwan", Remote Sensing, 11(23), 2817. https://doi.org/10.3390/rs11232817
  68. Yuan, C. and Moayedi, H. (2019a), "Evaluation and comparison of the advanced metaheuristic and conventional machine learning methods for prediction of landslide occurrence", Eng. Comput, 36, 1-11. https://doi.org/10.1007/s00366-019-00798-x
  69. Yuan, C. and Moayedi, H. (2019b), "Evaluation and comparison of the advanced metaheuristic and conventional machine learning methods for the prediction of landslide occurrence", Eng Comput., 1-11. https://doi.org/10.1007/s00366-019-00798-x
  70. Zhang, C.C., Zhu, H.H., Shi, B., She, J.K. and Zhang, D. (2016), "Performance evaluation of soil-embedded plastic optical fiber sensors for geotechnical monitoring", Smart Struct. Syst., Int. J., 17(2), 297-311. https://doi.org/10.12989/sss.2016.17.2.297
  71. Zhang, T., Shen, W.B., Wu, W., Zhang, B. and Pan, Y. (2019a), "Recent surface deformation in the Tianjin area revealed by Sentinel-1A data", Remote Sensing, 11(2), 130. https://doi.org/10.3390/rs11020130
  72. Zhang, Z., Jiang, D., Liu, W., Chen, J., Li, E., Fan, J. and Xie, K. (2019b), "Study on the mechanism of roof collapse and leakage of horizontal cavern in thinly bedded salt rocks", Environ. Earth Sci., 78(10), 292. https://doi.org/10.1007/s12665-019-8292-2
  73. Zhou, G., Moayedi, H., Bahiraei, M. and Lyu, Z. (2020a), "Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings", J. Cleaner Prod., 254. https://doi.org/10.1016/j.jclepro.2020.120082
  74. Zhou, G., Moayedi, H. and Foong, L.K. (2020b), "Teaching-learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building", Eng. Comput., 36. https://doi.org/10.1007/s00366-020-00981-5
  75. Zhu, H.H., Ho, A.N., Yin, J.H., Sun, H.W., Pei, H.F. and Hong, C.Y. (2012), "An optical fibre monitoring system for evaluating the performance of a soil nailed slope", Smart Struct. Syst., Int. J., 9(5), 393-410. https://doi.org/10.12989/sss.2012.9.5.393